

Usando la Notación Científica TI MathForward™

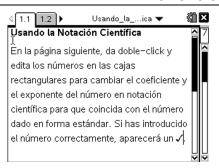
NOTAS DEL PROFESOR

INVESTIGACIÓN

Objetivos Matemáticos

- Los estudiantes convertirán números en notación estándar a notación científica y viceversa.
- Los estudiantes identificarán números escritos en notación científica.
- Los estudiantes escribirán sus propias reglas para convertir un número en forma estándar y en notación científica.

Vocabulario


- coeficiente
- base
- exponente
- notación científica
- forma estándar
- forma expandida

Sobre la lección

- Esta lección implica que los estudiantes usen flechas para cambiar el exponente de un número escrito en notación científica y compararlo con un número escrito en forma estándar.
- Como resultado, los estudiantes serán capaces de escribir su propia regla para convertir números escritos en forma estándar a números escritos en notación científica y viceversa.

Sistema TI-Nspire TM Navigator TM

- Distribuya la evaluación para el Quick Polls.
- Use el Screen Capture para monitorear el progreso de los estudiantes.
- Use el Live Presenter para ayudar a los estudiantes a usar correctamente el documento.

Habilidades TecnologíaTI-Nspire™:

- Bajar un documento TI-Nspire
- · Abrir un documento
- Moverse entre páginas
- Atrapar y arrastar un punto

Tips Tecnológicos:

- Asegurarse que el tamaño de la fuente de la calculadora TI-Nspire sea mediano.
- Se puede esconder la línea de entrada de funciones pulsando etr) G.

Materiales de la Lección:

Actividad del Estudiante

- Usando_la__Notación_Notation_Cien tífica
 - Estudiante.pdf
- Usando_la__Notación_Notation_Cien tífica_

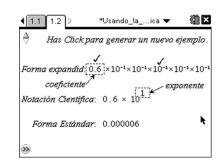
Estudiante.doc

Document TI-Nspire

 Usando_la__Notación_Notation_Cien tífica.tns

Recursos Externos:

 Aplicaciones de la NASA para notación científica:


http://www.nasa.gov/ audience/foreducators/ topnav/materials/listbytype/ SMII Problem9.html

Puntos a Discusión y Respuestas Posibles

Tip para el Profesor: Asegúrese que los estudiantes tengan el cursor sobre las fleches arriba y abajo y que se coloree de negro antes de dar click sobre él. Asegúrese que los estudiantes den doble-click sobre los números al introducirlos en modo edición cuando cambien los números en la página 1.2.

Moverse a la página 1.1 y leer las instrucciones. Después moverse a la página 1.2.

Revisa el número escrito en la forma estándar. Dar dobleclick para escribir los números en las cajas rectangulares en notación científica escribiendo correctamente el coeficiente y su exponente.

 Tipea el coeficiente y el exponente del número escrito en notación científica para que coincide con el número escrito en forma estándar. Registra tus respuestas en la tabla de abajo.

Respuestas Muestra:

Número en	Número Escrito en	10s Multiplicados	Coeficiente	Exponente
Forma	Notación Científica			
Estándar				
50,000	5.0×10^4	10 × 10 × 10 × 10	5.0	4
420,000	4.2×10^5	10 × 10 × 10 × 10	4.2	5
		× 10		
92	9.2×10^{1}	10	9.2	1
0.069	6.9 × 10 ⁻²	$10^{-1} \times 10^{-1}$	6.9	-2

a. Usa cualquier patrón observado para escribir una regla para cambiar cualquier número escrito en forma estándar para escribirlo en notación científica.

Respuesta: Los estudiantes deben llegar a la regla moviendo el decimal relacionado al exponente.

Algunas respuestas: En notación científica, todos los números son escritos como: $a \times 10^b$ ("a veces 10 a la potencia b"), donde el exponente b es un entero y el coeficiente a es un número real. El exponente b se elige tal que el valor absoluto de a es mayor que 1 pero menor a 10 (1 \le |a| < 10), o mueve el decimal el número deseado de lugares a la izquierda o a la derecha para que el coeficiente esté entre 1 y 10. Si mueves el punto decimal n lugares a la izquierda, después multiplica por 10^n ; si mueves el punto decimal n lugares a la derecha, después multiplicas por 10^{-n} .

b. ¿Qué sucede al contrario? Escribe una regla para cambiar un número escrito en notación científica a un número escrito en forma estándar.

Respuesta: Regla muestra: Para convertir de notación científica a forma estándar, toma el coeficiente y mueve el punto decimal el número de lugares indicado por el exponente, a la izquierda si el exponente es negativo o a la derecha si el exponente es positive. Agrega tantos ceros como sea necesario.

 Los científicos regularmente usan la notación científica para escribir números muy largos o números muy pequeños. Usa tu regla y cualquier patrón que hayas encontrado para convertir las distancias entre los planetas y el sol, en la forma faltante.

Algunas Respuestas:

Planeta	Distancia al Sol en	Distancia al Sol en Notación Estándar	
	Notación Científica		
Mercurio	5.79 × 10 ⁷	57,900,000 km	
Venus	1.082 × 10 ⁸	108,200,000 km	
Tierra	1.496 × 10 ⁸	149,600,000 km	
Marte	2.279 × 10 ⁸ km	227,900,000 km	
Júpiter	$7.783 \times 10^8 \mathrm{km}$	778,300,000 km	
Saturno	1.427 × 10 ⁹ km	1,427,000,000 km	

- 3. La nanotecnología es un campo de investigación y desarrollo que busca nuevas soluciones a problemas de salud y ambientales combinando las ciencias físicas y la ingeniería con las ciencias de la vida y la medicina. *Nano es* el término científico que significa "una billonésima" (1/1,000,000,000 ó 1 × 10⁻⁹). Proviene de la palabra griega "enano." Un nanómetro es una billonésima de un metro ó 1 × 10⁻⁹ m.
 - a. El ancho de una molécula de agua es de cerca de 1/4 de un nanómetro ó 0.25×10^{-9} metros. Escribe este número en notación científica.

Respuesta: 2.5 x 10⁻¹⁰ m

b. Un virus es aproximadamente 70 nanómetros de ancho, ó 70×10^{-9} m. Escribe este número usando notación científica.

Respuesta: 7.0 × 10⁻⁸ m

Respuesta: 1.7×10^{-24} grs.

5. La masa típica de una molécula de proteina es 1×10^{-22} kg. Escribe este número en forma estándar.

Respuesta: 0.0000000000000000000001 kg

Oportunidad TI-Nspire Navigator

A medida que los estudiantes exploren la escritura de números usando la notación científica, use el Screen Capture ó Live Presenter para proyectarle a los estudiantes trabajo y para que compartan su pensamiento para ayudarles a construir sus propias reglas para convertir de forma a estándar a notación científica y viceversa.

Resumiendo

Al término de la discusión, el profesor se asegurará que los estudiantes sean capaces de:

- Reconocer y escribir números usando notación científica.
- Convertir números de forma estándar a notación científica y viceversa.

Evaluación

Los estudiantes deberán usar las reglas que construyeron para construir un quiz (examen corto) y la clave de respuestas correspondiente para sus pares. Los quizzes también pueden ser convertidos a Quick Polls para que los estudiantes hagan uso del TI-Navigator.