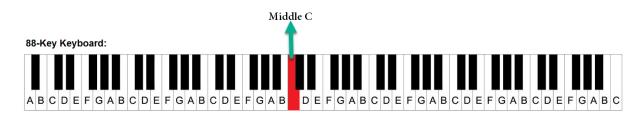
Which Note am I playing?



Teacher Notes and Answers

7 8 **9 10 11 12**

Which Musical Note am I playing?

In a full Piano, there are 88 Keys. Each key plays a different note. There is a mathematical pattern associated with the note frequency as we move from left to right. The same happens with any musical instrument.

Investigating and analysing the pattern and the note frequency.

Notes are defined by the frequency. On a Piano the key on the extreme left (1st key) plays the lowest note and the last key (extreme right plays the highest note)

88-Key Piano Keyboard Layout

Note: The first key on an 88 key piano is the A note and the last keynote is C.

Question 1: On an 88 Key Piano how many A note keys (amongst white keys) do you notice?

Answer: 8 Keys

Question 2: On an 88 Key Piano how many C note keys (amongst white keys) do you notice?

Answer: 8 Keys

Question 3: On an 88 Key Piano how many D or E or F or G note keys (amongst white keys) do you notice?

Answer: 7 Keys

8A+8B+8C+7D+7E+7F+7G=52 White Keys

36 Black Keys (Flat and Sharp Notes)

Total 52+36=88 Keys

© Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author : S Meston

Total Number of white and black Keys

8A+8B+8C+7D+7E+7F+7G=52 White Keys

36 Black Keys (Flat and Sharp Notes)

Let's Identify the pattern

The First A note (key 1) has a Note frequency of 27.5 Hz. (Hz=Hertz is the number of cycles /second)

The key numbering now includes the White and the Black keys

Key No.	Key (Note)	Note Frequency in	Write a possible Recursive Pattern to
	Reference	Hertz	determine the frequency
Key 1	1A	27.5	27.5 or .
ey 13	2A	55	2×27.5 or $2^1 \times 27.5$ or $2 \times 1A$
Key 25	3A	110	4×27.5 or $2^2 \times 27.5$ or $2 \times 2A$
Key 37	4A	220	8×27.5 or $2^3 \times 27.5$ or $2 \times 3A$
Key 49	5A	440	$16 \times 27.5 \text{ or } 2^4 \times 27.5 \text{ or } 2 \times 4A$
Key 61	6A	880	32×27.5 or $2^5 \times 27.5$ or $2 \times 5A$
Key 73	7A	1760	64×27.5 or $2^6 \times 27.5$ or $2 \times 6A$
Key 85	8A	3520	128×27.5 or $2^7 \times 27.5$ or $2 \times 7A$

Question 4: Complete the Table underneath with

Note: The human audible range is 20Hz-20,000 Hz. The audible range reduces with age. Our audible hearing range typically reduces with age, so it is quite likely that elderly people may not hear frequencies over 12kHz.

By end of this task, we should be able to work out the frequency for the 88th Key

A similar Table can be created for (B or C or D or E or F Notes).

Try this on your TI-Nspire

- Enter Line 1 in Curly Brackets (Braces) and Enter
- Enter Line 2 in Curly Brackets. It uses the answer from previous line (line 1 in this case)

Author: S. Meston

Total 52+36=88 Keys

Keep hitting the enter key). Do it 7 times.

- > The First value in the output is "A Note Reference Number" A1, A2
- > Second value is the Corresponding frequency for the A Notes 27.5, 55

{1,27.5}	{1,27.5}
$\{\{1,27.5\}[1]+1,\{1,27.5\}[2]\cdot 2\}$	{2,55.}
$\{\{2,55,\}[1]+1,\{2,55,\}[2]\cdot 2\}$	{3,110.}
$\{\{3,110.\}[1]+1,\{3,110.\}[2]\cdot 2\}$	{4,220.}
$\{\{4,220.\}[1]+1,\{4,220.\}[2]\cdot 2\}$	{5,440.}
$\{\{5,440.\}[1]+1,\{5,440.\}[2]\cdot 2\}$	{6,880.}
$\{\{6,880.\}[1]+1,\{6,880.\}[2]\cdot 2\}$	<mark>{7,1760.}</mark>
$\{\{7,1760.\}[1]+1,\{7,1760.\}[2]\cdot 2\}$	<mark>{8,3520.}</mark>

Keep hitting the enter key). Do it 7 times.

- > The First value in the output is "A Note Reference Number " A1, A2
- > Second value is the Corresponding frequency for the A Notes 27.5, 55

Extension Task:

Try obtaining the same pattern on TI-Nspire

a. using the List and Spread-sheet Application

4 2	2.1 2.2 3	.1 ▶ *Doc ¬	~	RAD 🚺	×
P	^A key	в	С	D	
=					
1	0				
2	12				
3					
4					
5					
A3				•	

	2.1 2.2 3	.1 🕨 *Doc 🤜	7	RAD 🚺 🗙		
P	^A key	В	С	D		
=						
+	0					
2	12					
3						
4						
5						
A1:	A1:A2					

A X•Y	1: Actions	►	*Doc 🗢 🛛 🤜	AD 🚺 🗙
2	2: Insert	►	C D	
1,3,5	3: Data	∢	1: Generate Sequence	
X	4: Statistics	►	2: Data Capture	
XY	5: Table	►	3: Fill	
2	10		4: Clear Data	
	12		5: Random	
3			6: List Math	
4			7: List Operations	
5			8: Summary Plot	
5			9: Quick Graph	
A1:	A.2			

4 2	2.1 2.2 3	.1 🕨 *Doc 🤜	7	RAD 🚺 🗙
P	^A key	В	С	DI
=				
1	0			
2	12			
3				
4				
5				
A1:	12			

4	2.1 2.2 3	.1 🕨 *D	\sim	R	AD 🚺 🗙
۴	^A key	В	С	D	
=					
5	48				
6	60				
7	72				
8	84				
9					
A8	84	1		1	•

Stop at cell A-8 (Column A and Row 8)

For Frequencies in B column call it 'freq' and in the formula box enter

 $= 27.5 \times (1.05946)^{key}$

Key is a reference to values from column 1, We have used an approximated value so values will be very close to 55, 110, 220, 449 etc

Author: S. Meston

[©] Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

•	1.3 2.1 2	.2 🕨 *Doc 🗸	~	RAD 🚺	X
P	^A key	^B freq	С	D	
=		5046)key			
6	61				III
7	73				
8	85				
9	k				
10					
B	=27.5 (1.05	5946) key			▼
		Î			

•	1.3 2.1 2	.2 🕨 *Doc 🤜	7	RAD 🚺 🗙
P	^A key	^B fre	С	D
=		=27.5*(1.0		
1	0	27.5		
2	12	54.9981		
3	24	109.992		
4	36	219.977		
5	48	439.938		
Bj	fre:=27.5. (1.05946) ^{ke}	ey.	◀ ►

b. Generate a sequence (using the sequence command)

$$seq(12 \cdot x + 1, x, 0, 7) \cdot \{1, 13, 25, 37, 49, 61, 73, 85\}$$

$$seq(27.5 \cdot 2^{x}, x, 0, 7)$$

$$\cdot \left\{\frac{55}{2}, 55, 110, 220, 440, 880, 1760, 3520\right\}$$

- c. You may try to obtain the pattern in TI-Nspire using
 - i. TI-Basic
 - ii. Python.

Part 2: What is Exponential Growth and what is the Exponential Pattern for Music Notes.

Introduction to Exponential Equations and Exponential Regression

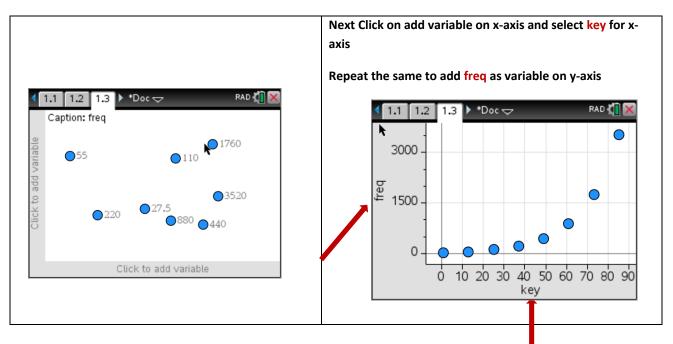
This is the result

{1,27.5}	{ <mark>1</mark> ,27.5}
$\{\{1,27.5\}[1]+12,\{1,27.5\}[2]\cdot 2\}$	{ <mark>13</mark> ,55.}
$\{\{13,55,\}[1]+12,\{13,55,\}[2],2\}$	{ <mark>25</mark> ,110.}
$\{\{25,110,\}[1]+12,\{25,110,\}[2]\cdot 2\}$	{ <mark>37</mark> ,220.}
$\{\{37,220.\}[1]+12,\{37,220.\}[2]\cdot 2\}$	$\{49,440.\}$
$\{\{49,440.\}[1]+12,\{49,440.\}[2]\cdot 2\}$	{ <mark>61</mark> ,880.}
$\{\{61,880.\}[1]+12,\{61,880.\}[2]\cdot 2\}$	{ <mark>73</mark> ,1760.}
$\{\{73,1760.\}[1]+12,\{73,1760.\}[2]\cdot 2\}$	{ <mark>85</mark> ,3520.}

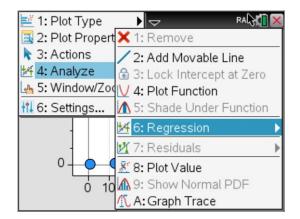
Question 1: What possibly is represented by the first of the two values in the output in each line for the 8 rows?

Ans: First Value represents the key number for all the A notes

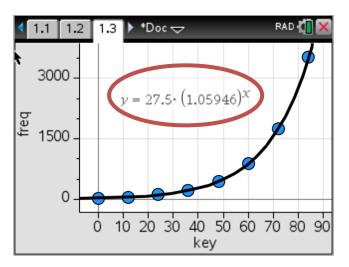
Using the List & Spread-Sheet and Data & Statistics Applications on TI-Nspire


Step 1: Enter the Values as shown below in a List & Spreadsheet Application

Col A: Key {0,12,24,36,48,60,72,84}


Col B: freq {27.5,55,110,220,440,880,1760,3520}

4	1.1 1.2	▶ *	Doc 🗢	R/	AD 🚺 🔀
•	^A key	^B freq	с	D	E ^
=					
1	1	27.5			
2	13	55			
3	25	110			
4	37	220			
5	49	440			
С					



Step 3: Obtaining a regression equation (Menu+Analyse) and follow the steps as under

📑 1: Plot Type 🛛 🗖 🤝	RAD 🚺 🗙
1: Show Linear (mx+b)	love
2: Show Linear (a+bx)	Movable Line
3: Show Median-Median	Intercept at Zero
4: Show Quadratic	Function
5: Show Cubic	de Under Function
6: Show Quartic	ression
7: Show Power	
8: Show Exponential	duals 🕨 🕨
9: Show Logarithmic	Value
A: Show Sinusoidal	w Normal PDF
▼	ph Trace

Question 2:

i. What is the value **27.5** in the regression equation?

Ans: It is the frequency of the First key A1=27.5

ii. What will; x input value represent in $y = 27.5 \times 1.05946^x$?

Hint: we started with zero and not 1 for keys,

X= 0 represents Key 1, x=1 represents Key number 2, x=87 represents key number 88

Ans: x+ 1 will be the key number

i. What information will; y output value represent in $y = 27.5 \times 1.05946^{x}$ when x $\in \{0,1,2,3,\dots,87\}$

Ans: y represents the Note frequency for a key given by x+1

ii. Do you want to guess what the value 1.0594 may be??? You'll find the answer at the end of this worksheet.

Ans: Since there are 12 keys between the A notes. $2^{\frac{1}{12}} \approx 1.05946$. 1.0594 is the multiplying factor to obtain the note frequency for the next key. Since the Note frequency doubles (x2) from one A note to the next A Note.

Example: The Note frequency for the 23rd key will be

$$F_{23} = 1.0594 \times F_{23}$$

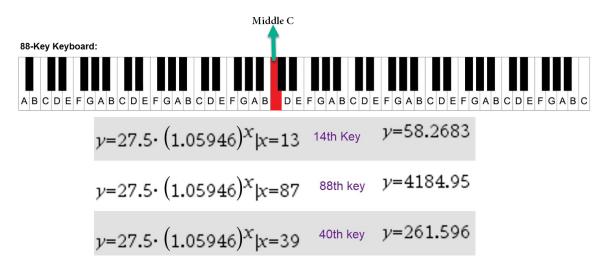
1		1.05946
2 ¹²	k.	

Question 3: Using the Equation $y = 27.5 \times 1.05946^{x}$

For this question express your answers to 2 decimal places.

a. Find the Note frequency for the 14th Key (Hint: This key is not an A Note)

58.27 Hz


b. Find the Note Frequency for the 88th Key (Last key on the Piano). Note this is a C Note

4184.95 Hz

c. For Musicians Middle C is an important note. On an 88 key Piano it is the 40th Key (including white and black keys). Determine the Note frequency for the Middle C Note

261.60 Hz

Question 4: Using the Equation $y = 27.5 \times 1.05946^{x}$

a. Complete this table for the first 12 keys (This includes the white and the Black Keys)

The lowest note on the 88 Piano key is 27.5 Hz and corresponds to A_1 (key number 1)

The table on the next page is for the first 12 keys of the Piano. You need to complete it for Keys 6-12

The table underneath is for the first 12 keys of the Piano

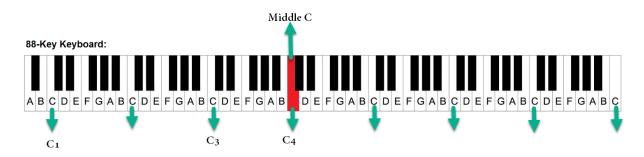
Note	А	A#	В	С	C#	D	D#	Е	F	F#	G	G#
Key	1	2	3	4	5	6	7	8	9	10	11	12
(n)												
Freq	27.500	29.135	30.867	32.703	34.647							
in Hz												
Key												
Colour												

The values are rounded to 2 decimal places

 $y=27.5 \cdot (1.05946)^{x} | x= \{5,6,7,8,9,10,11\}$ $*= \{36.7076,38.8902,41.2026,43.6525,46.2481,48.998,51.9114\}$ $y=round (\{36.7076,38.8902,41.2026,43.6525,46.2481,48.998,51.9114\}$ $y= \{36.71,38.89,41.2,43.65,46.25,49.,51.91\}$ D=36.71 D

G#=51.91

b. Using the table values state the ratio for the following to two decimal places


$$\frac{Key2}{Key1} = \boxed{1.06} \qquad \frac{Key4}{Key3} = \boxed{1.06} \qquad \frac{Key12}{Key11} = \boxed{1.06}$$

c. Hence using the ratio value, develop a recursive pattern for two consecutive keys to obtain the frequency of Key_{n+1} in terms of Key_n (Key_n is the preceding key to Key_{n+1})

 $F(Key_{n+1}) = 1.06 \times F(Key_n)$ where F is the frequency

Part 3: This section is Meant for students in the Year 10 Advanced Mathematics course

Understanding Octaves and Exponential Equations

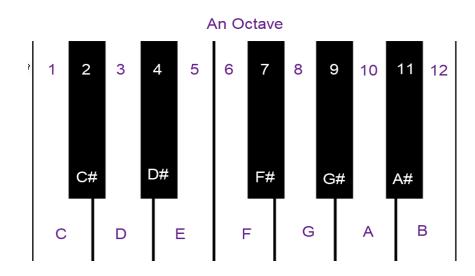
Question 1:

- a. On an 88 key Piano, how many keys can play the C note?
 8 Keys
- b. What would be a quick way to Identify the C note key on a Piano in relation to the black keys?
 The C key is always the white Key before the pair of Black keys (the two black keys)
- c. Ignoring the first black key, what pattern do you observe with the black keys? Two black keys with a white key in between, followed by 2 white keys, then 3 black keys again with a white key in between each of them and then 2wo white keys again before the pattern repeats.
- d. What will be a quick way to identify the B note on a Piano keyboard?

B key is always the white key after the group of 3 black keys (white key after the black triad)

Octave: An octave includes 12 keys between two musical notes that have the same letter Note.

It is called an 'octave' because there are eight notes in a scale ('octo' is Latin for 'eight')


The white keys unnatural notes are assigned letters A to G. The Black Keys are assigned the letter symbol followed by a sharp (symbol) or a flat (symbol) so if we are moving from left, the black key to the right of C would be C sharp and the same black key which is also to the left of D can be classified as D flat so C sharp and D flat will have the same frequency and are the same key

Likewise, the next black key (in the group of Black keys) will be D sharp and E Flat

Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained. Author: S. Meston

Question 2

A Mathematical rule to determine the frequency of the A notes is $A(n) = 27.5 \times 2^{n-1}$; $n \in \mathbb{Z}$ and $1 \le n \le 8$

- a. Explain how this rule may have been obtained
 - 27.5 is the frequency of the 1st Key
 - 2 because the frquency of notes doubles each time
 - 2^{n-1} ; $1 \le n \le 8$ since key 1 is n=1, and the first power should be zero, $\therefore 2^0 = 1$
- **b.** Using the same Mathematical logic state a rule to obtain the frequency for all the Eight C Notes on the Piano in the form $C(n) = F \times 2^{n-1}$; $n \in Z$ and $1 \le n \le 8$. You may need to obtain data values from the table you completed in the previous section

 $C(n) = 32.703 \times 2^{n-1}; n \in \mathbb{Z}$ and $1 \le n \le 8$

Considering the fact, that there are 12 keys in an octave, we will modify the rule

 $A(n) = 27.5 \times 2^{n-1}; n \in \mathbb{Z}$ and $1 \le n \le 8$

to obtain the frequency for the first 12 keys

Question 3:

a. Write your rule in the form $F(n) = 27.5 \times 2^{\frac{n-1}{b}}$; $n \in \mathbb{Z}$ and $1 \le n \le 12$

by assigning a numeric value to b. Explain how you obtained the value of b.

 $F(n) = 27.5 \times 2^{\frac{n-1}{12}}; n \in \mathbb{Z}$ and $1 \le n \le 12$ Reason: Since there are 12 keys in a Octave.

so the note frequency increases by a factors of $2^{\frac{1}{12}}$ for each subsequent key

b. Modify your rule to obtain the Note frequency for all the 88 Keys on a Piano

© Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: S. Meston

$$F(n) = 27.5 \times 2^{\frac{n-1}{12}}; n \in \mathbb{Z} \text{ and } 1 \le n \le 12$$

Concluding Remarks

Not all Keyboards have 88 Keys; hence the first key will not always be 27.5 Hz, therefore the Mathematical rule obtained by you is modified to make 440 as the principal frequency.

$$f(n) = 440\left(2^{\frac{n-49}{12}}\right)$$
; $1 \le n \le 88$

And the answer to the guessing question is

The frequency table or chart works for all musical instruments, except for the facts that some musical instruments have fewer octaves

```
© Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.
```

