Ratios of Similar Figures
Name $\qquad$
Student Activity
Class $\qquad$

Open the TI-Nspire document Ratios_of_Similar_Figures.tns.

In this activity, you will explore the will explore the ratio of perimeter, area, surface area, and volume of similar figures in two and three dimensional figures.


Move to pages 1.2: This page sets the stage for the activity.

On page 1.3, you are given $\triangle A B C$ that is similar to $\Delta X Y Z$. You are alscs given the perimeter of $\triangle A B C$ and $\triangle X Y Z$. Move point $A$ tis four diterent positons and collect the data in the table on the accompanying worksheet. Galculst the ratios of the perimeters for each postion and record the calculation $n$ the accumparying worksheet.


| Position | $A B$ | $X Y$ | Perimeter of <br> $X Y Z$ | Perimeter of <br> $A B C$ | Ratio of <br> Perimeters <br> (Round to 2 <br> decimals) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ |  |  |  |  |  |
| 2 |  |  |  |  |  |
| 3 |  |  |  |  |  |
| 4 |  |  |  |  |  |

2. What is the similarity ratio of the two triangles written in the form $a: b$ ?
3. What is the ratio of the perimeters of the two triangles in the form $a: b$ ?
4. How are the similarity ratio and the ratio of the perimeters related?
$\qquad$
$\qquad$

On page 1.9, you are given $\triangle A B C$ that is similar to $\triangle X Y Z$. You are also given the area of $\triangle A B C$ and $\triangle X Y Z$.
5. Move point $A$ to 4 different positions and collect the data in the table below. Calculate the ratios of the perimeter of $\triangle X Y Z$ to perimeter of $\triangle A B C$ for each position and record the calculation in the table below.

| Position | $A B$ | $X Y$ | Area of $X Y Z$ | Area of $A B C$ | Ratio of <br> Areas <br> (Round to 2 <br> decimals) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ |  |  |  |  |  |
| 2 |  |  |  |  |  |
| 3 |  |  |  |  |  |
| 4 |  |  |  |  |  |

6. What is the ratio of the areas of the two triangles in the form $a: b$ ?
7. How are the similarity ratio and the ratio of the areas related?

Problem 2 - Similar Figures

$\qquad$
$\qquad$
On page 2.2, you are given pentagon $A B C D E$ that is similar to pentagon $X Y Z T U$. You are also given the perimeter of $A B C D E$ and $X Y Z T U$.
8. Move point $A$ to 4 different positions and collect the data in the table below. Calculate the ratios of the perimeter of pentagon $X Y Z T U$ to perimeter of pentagon $A B C D E$ for each position and record the calculation in the table below.

| Position | $\boldsymbol{A B}$ | $\boldsymbol{X Y}$ | Perimeter of <br> $\boldsymbol{X Y Z T U}$ | Perimeter of <br> $\boldsymbol{A B C D E}$ | Ratio of <br> Perimeters <br> (Round to 3 <br> decimals) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |
| 2 |  |  |  |  |  |
| 3 |  |  |  |  |  |
| 4 |  |  |  |  |  |

9. What is the similarity ratio of the two pentagons written in the form $a: b$ ?

10 . What is the ratio of the perimeters of the two pentagons in the form $a: b$ ?
11. How are the similarity ratio and the ratio of the perimeters related?

On page 1.9, you are given pentagon $A B C D E$ that is similar to pentagon $X Y Z T U$. You are also given the area of $A B C D E$ and XYZTU.
12. Move point $A$ to 4 different positions and collect the data in the table below. Calculate the ratios of the perimeter of pentagon $X Y Z T U$ to perimeter of pentagon $A B C D E$ for each position and record the calculation in the table below.

| Position | $\boldsymbol{A B}$ | $\boldsymbol{X Y}$ | Area of <br> $\boldsymbol{X Y Z T U}$ | Area of <br> $\boldsymbol{A B C D E}$ | Ratio of <br> Areas <br> (Round to 3 <br> decimals) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |
| 2 |  |  |  |  |  |
| 3 |  |  |  |  |  |
| 4 |  |  |  |  |  |

13. What is the ratio of the areas of the two triangles in the form $a: b$ ?
$\qquad$
$\qquad$
14. How are the similarity ratio and the ratio of the areas related?
15. If the similarity ratio of two similar figures is $a: b$, then the ratio of the perimeters is $\qquad$ .
16. If the similarity ratio of two similar figures is $a: b$, then the ratio of the areas is $\qquad$ .

## Problem 3 - Extension to Three-Dimensional Figures



For this problem, we will look at three-dimensional figures and the ratio of the surface area and volume of two similar figures.

On page 3.3 you are given two similar cubes. You are also given the length of one side of each cube.
17. Move point $A$ to 4 different positions and collect the data in the table on the accompanying worksheet. Calculate the ratios of the surface areas for each position and record the calculation in the table below.

| Position | $\boldsymbol{A B}$ | $\boldsymbol{C D}$ | Surface Area <br> of Small Cube | Surface Area <br> of Large <br> Cube | Ratio of <br> Surface <br> Areas <br> (Round to <br> 3 decimals) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ |  |  |  |  |  |
| 2 |  |  |  |  |  |
| $\mathbf{3}$ |  |  |  |  |  |
| 4 |  |  |  |  |  |

18. What is the similarity ratio of the two cubes written in the form $a: b$ ?
19. What is the ratio of the surface areas of the two cubes in the form $a: b$ ?
20. How are the similarity ratio and the ratio of the surface areas related?
$\qquad$
$\qquad$

On page 3.9, you are given two similar cubes. You are also given the length of one side of each cube.
21. Move point $A$ to 4 different positions and collect the data in the table on the accompanying worksheet. Calculate the ratios of the volumes for each position and record the calculation in the table below.

| Position | $A B$ | $X Y$ | Volume of <br> Small Cube | Volume of <br> Large Cube | Ratio of <br> Volumes <br> (Round to <br> 6 decimals) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |
| 2 |  |  |  |  |  |
| 3 |  |  |  |  |  |
| 4 |  |  |  |  |  |

22. What is the ratio of the volumes of the two cubes in the form $a: b$ ?
23. How are the similarity ratio and the ratio of the volumes related?
24. If the similarity ratio of two similar figures is $a: b$, then the ratio of the surface areas is $\qquad$ _.
25. If the similarity ratio of two similar figures is $a: b$, then the ratio of the volumes is $\qquad$ .
