\qquad

Investigating the Relationship between the Sides of Right Triangles and Oblique Triangles with TI-Nspire Handheld

1. What does the Pythagorean Theorem tell us about the relationship of sides a, b, and c of right $\triangle \mathrm{ABC}$? State the formula as you know it.

$$
a^{2}+b^{2}-c^{2}
$$

2. What is the value of $a^{2}+b^{2}-c^{2}$ for a right triangle? \qquad

3. Open file "Triangle Investigation" on TI-Nspire and do problem \#1.
4. If a and b stay constant and $\angle \mathrm{C}$ becomes an acute angle, predict whether $a^{2}+b^{2}-c^{2}$ is positive, negative, or zero.
\qquad
Explain why.
Since c is becoming smaller, we will be subtracting a smaller amount than
 we did for the right triangle.
5. If a and b stay constant and $\angle \mathrm{C}$ becomes an obtuse angle, predict whether $a^{2}+b^{2}-c^{2}$ is positive, negative, or zero.

Explain why.
Since c is becoming larger, we will be subtracting a larger amount than we did for the right triangle.

6. Based on your answers above, if $\angle \mathrm{C}$ varies from 0° to 180°, describe the behavior of $a^{2}+b^{2}-c^{2}$.
It will be positive at 0°, decreasing to zero at 90°, then becoming more negative as you approach 180°.
7. Do problem \#2 from file "Triangle Investigation" on TI-Nspire to check your thinking.
8. On page 2.2 of file "Triangle Investigation", side a and side b are constant: $a=3 \mathrm{~cm}$ and $b=4 \mathrm{~cm}$.
Side c and $\angle \mathrm{C}$ vary. Collect some data from your drawing, and enter it in the chart on the right.
9. If you graph $\angle \mathrm{C}$ on the x -axis and $a^{2}+b^{2}-c^{2}$ on the y -axis, describe what you know about the shape of the graph from your observations.
There is a negative association so it will be decreasing, but it will not be linear because the rate of change is not constant.

$\angle \mathrm{C}$	$a^{2}+b^{2}-c^{2}$
0°	24
30°	20.8
60°	12
90°	0
120°	-12
150°	-20.8
180°	-24

10. Let's look at the relationship in the table from \#8 a little further. We'll collect more data in a spreadsheet and graph that data. Go to problem \#3 in the file "Triangle Investigation", and follow the directions carefully. You will be graphing $\mathrm{m} \angle \mathrm{C}$ on the x -axis and the algebraic expression $a^{2}+b^{2}-c^{2}$ on the y -axis.
11. Does the shape of the graph look like you thought it would? \qquad
12. What type of functions would fit this data? \qquad $\sin (x)$ or $\cos (x)$
13. Return to page 3.5 in the file "Triangle Investigation". To enter your function guess, you will need to show the function entry line. To do this press menn, then 2:View, and 6:Show Entry Line. Press

Guess $\mathrm{f} 1(\mathrm{x})=\ldots \quad \cos (\mathrm{x})$
14. What features of your function are correct?

It has the right shape and the x -intercept is correct.
15. What features of your function need adjustment?

The altitude or vertical stretch needs to be much greater. The table suggests it will be 24 .
16. Edit the function to better fit the data. (If the entry line now says $f 2(x)=$, up arrow to return to $\mathrm{f} 1(\mathrm{x})=$.)

What is your final function?

$$
\mathrm{f} 1(\mathrm{x})=\quad 24 \cos (\mathrm{x})
$$

17. Side a and side b of the triangle were constants in this investigation: side $\mathrm{a}=3$ and side $\mathrm{b}=4$. How does the constant in your function relate to these constant sides?

It is twice the product of the constant sides: $2 \times 3 \times 4=24$
18. Generalize your hypothesis, and complete this equation for all triangles.

$$
a^{2}+b^{2}-c^{2}=-2 \operatorname{abcos}(\mathrm{C})
$$

19. Solve the equation for c^{2}.

$$
c^{2}=a^{2}+b^{2}-2 a b \cos (C)
$$

Extension:
In the extension, side b and $\mathrm{m} \angle \mathrm{C}$ are constant, and side a and side c will vary. Go to problem \#4 in the file "Triangle Investigation" and follow directions carefully.

What is the shape of the graph?
linear
Write an equation to fit the data \& enter it in $\mathrm{f} 1(\mathrm{x})=$
\qquad (Refer to \#13 to show function entry line.)
Explain the shape of the graph in relation to the triangle. $y=a^{2}+b^{2}-c^{2}=2 a b \cos (C)$ a is constant, $\cos (\mathrm{C})$ is constant, $\& \mathrm{~b}$ is variable. It is a line with $\mathrm{m}=2 \operatorname{acos}(\mathrm{C})=2 \mathrm{x} 4 \mathrm{x} \cos \left(80^{\circ}\right)$.

