Polar Functions

by

Mary Ann Connors

Department of Mathematics
Westfield State College
Westfield, MA 01086

Textbook Correlation: Key Topic

- Polar Functions
- Applications of Integration

NCTM Principles and Standards:

- Process Standard
- Representation
- Connections

A polar curve is the graph of an equation $r=f(\theta)$ where (r, θ) are standard polar coordinates of a point P . The relationship between the Cartesian coordinates (x, y) and polar coordinates (r, θ) of a point P are given by the equations $x=r \cdot \cos (\theta)$ and $y=r \cdot \sin (\theta)$.

Exercise 1.

Plot the graph of $r=\sin 5 \theta$ on the TI-89 (TI-92 Plus).

Solution:

Any equation of the form $y=a \cdot \cos (n \theta)$ or $y=a \cdot \sin (n \theta)$ where a is an arbitrary real number and n is an arbitrary positive integer is called a rose curve. If n is odd, there are exactly n leaves (loops); if n is even, there are exactly $2 n$ leaves.

Press the MODE key. Select 3:POLAR for Graph. Select 1:RADIAN for Angle. Enter the equation in the $\mathbf{Y}=$ Editor. Press $\mathbf{2}^{\text {nd }}+(\mathbf{C H A R})$ and select 1:Greek and 9: θ.

To see the five-leaved rose traced out, highlight the equation and select 6:Path under F6 Style. Set the appropriate values for window variables. Note that the graph is completely traced out as θ varies from 0 to π. Letting θ vary from 0 to 2π retraces the graph.

To observe the retracing of the graph change the θ max variable in the window to 2π. In the TbSet (Table Set Window) set tblStart to 0 and Δ tbl to $\frac{\pi}{15}$. Look at the table of values.

In the GRAPH window press F1 Tools. Select 9:Format and 2:Polar for coordinates.

Press F3 Trace on the Graph Screen to see the points.

Recall that the points $\left(\frac{\pi}{15}, .866025\right)$ and $\left(\frac{16 \pi}{15},-.866025\right)$ are the same point. On the table these points are given as $(.20944, .866025)$ and (3.35103,-. 866025)

Exercise 2.

Find the area enclosed by one loop of the five-leaved rose.

Solution:

The area A of a region bounded by the graph of a continuous nonnegative function $r=f(\theta)$ and $\theta=a$ and $\theta=b$ where $0 \leq b-a \leq 2 \pi$ is given by
$\mathrm{A}=\int_{a}^{b} \frac{1}{2} f(\theta)^{2} d \theta$.

The area of one loop of the five-leaved rose pictured in the graph below can be calculated on the HOME screen as illustrated below.

Answer: The area of one loop of the five-leaved rose is $\frac{\pi}{20}$ square units.

Exercise 3.

Find the total area enclosed by the five-leaved rose.

Solution:

The total area enclosed by the five-leaved rose pictured in the graph below can be calculated on the HOME screen as illustrated below. One method entails multipling the area enclosed by one loop by 5 .

An alternative method calculates the area of all five leaves in one operation as depicted below.

Answer: The total area enclosed by the five-leaved rose is $\frac{\pi}{4}$ square units.

Exercise 4.

Find the length around the edge of one loop of the five-leaved rose.

Solution:

The length L of a polar curve $r=f(\theta)$ where $a \leq \theta \leq b$ is given by $\mathrm{L}=\int_{a}^{b} \sqrt{f(\theta)^{2}+f^{\prime}(\theta)^{2}} d \theta$.

Calculate the integral on the HOME screen as depicted below.

Answer: The length around the edge of one loop of the five-leaved rose is 2.101 units.

Exercise 5:

Find the total length around the edges of the five-leaved rose.

Solution:

Calculate the integral on the HOME screen as depicted below. One method entails multipling the length around one loop by 5 .

An alternative method calculates the length around all five leaves in one operation as portrayed below.

Answer: The total length around the edges of the five-leaved rose is 10.505 units.

