\qquad
\qquad

Problem 1 - Exploring $(x+b)^{n}$
On the right side of page 1.4, use the Text tool (MENU
> Actions > Text) to complete the triangle using combination notation.

The small subscript numbers can be entered by

Expand the binomials on page 1.6 using the Expand command. Use a Math Box to calculate your answers

	ndingBin.als ∇ \%
	$\begin{gathered} { }_{0} C_{0} C_{0}{ }_{1} C_{1} \\ { }_{2} C_{0} C_{0} C_{2} C_{2} C_{2} \\ { }_{3} C_{0}{ }_{3} C_{2}, C_{2}{ }_{3} C_{3} \\ { }_{40} C_{0} C_{2} C_{2} C_{2}{ }_{2} C_{3}{ }_{4} C_{1} \end{gathered}$ ${ }_{5} C_{0}$
Pascal's Triangle	

- When the binomials are expanded, what do you notice about the coefficients? The exponents?
- Expand the binomials on page 1.8. What effect does b have on the expanded binomial?
- Rewrite $1 \cdot x^{3}+3 \cdot b \cdot x^{2}+3 \cdot b^{2} \cdot x+1 \cdot b^{3}$ using combination notation.

Problem 2 - Exploring ($a x+1)^{n}$
On pages 2.2 and 2.3 , expand the given binomials. Make sure to place a multiplication symbol between a and x.

- What effect does a have on the expanded binomial?
- Rewrite $(a \cdot x+1)^{4}$ in expanded form using Pascal's triangle.
- Rewrite $(a \cdot x+1)^{4}$ in expanded form using combination notation.

Expanding Binomials

Problem 3 - Exploring $(a x+b)^{\boldsymbol{n}}$
On pages 3.2 and 3.3, expand the given binomials.

- What is the pattern involving a and b in $(a x+b)^{n}$?
- Write the expansion of the following binomials using combination notation. Remember that the first and last term have coefficients of 1.
$(a x+b)^{0}=$
$(a x+b)^{1}=$
$(a x+b)^{2}=$
$(a x+b)^{3}=$
- The pattern established in this problem can be generalized as the Binomial Theorem. State the Binomial Theorem by writing the first two and last two terms of the expanded binomial $(a x+b)^{n}$ using combination notation.

$$
(a x+b)^{n}=
$$

Extra Problems

Use the Binomial Theorem to expand the following binomials.

1. $(6 x+1)^{5}$
2. $(x+7)^{6}$
3. $(3 x+5)^{4}$
4. $(7 x+4)^{8}$
