Expanding Binomials ExpandingBinomials.tns

Name _	 		
Class			

Problem 1 – Exploring $(x + b)^n$

On the right side of page 1.4, use the **Text** tool **(MENU** > **Actions** > **Text)** to complete the triangle using combination notation.

The small subscript numbers can be entered by	
selecting them from the Symbols menu ([ctrl 🖾).

Expand the binomials on page 1.6 using the **Expand** command. Use a Math Box to calculate your answers (**MENU > Insert > Math Box** or ctrl **M**). The command for the first binomial has already been entered in a Math Box for you.

🖣 1.2 🛛 1.3 🔟 🕨 ExpandingBin…als 🗢 🛛 🕻					
1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 Pascal's Triangle	0C0 1C0 1C2 2C0 2C2 2C2 3C0 3C2 3C2 3C3 4C0 4C2 4C2 4C3 4C4 5C0				

- When the binomials are expanded, what do you notice about the coefficients? The exponents?
- Expand the binomials on page 1.8. What effect does b have on the expanded binomial?
- Rewrite $1 \cdot x^3 + 3 \cdot b \cdot x^2 + 3 \cdot b^2 \cdot x + 1 \cdot b^3$ using combination notation.

Problem 2 – Exploring $(ax + 1)^n$

On pages 2.2 and 2.3, expand the given binomials. Make sure to place a multiplication symbol between *a* and *x*.

- What effect does *a* have on the expanded binomial?
- Rewrite $(a \cdot x + 1)^4$ in expanded form using Pascal's triangle.
- Rewrite $(a \cdot x + 1)^4$ in expanded form using combination notation.

Expanding Binomials

Problem 3 – Exploring $(ax + b)^n$

On pages 3.2 and 3.3, expand the given binomials.

- What is the pattern involving *a* and *b* in $(ax+b)^n$?
- Write the expansion of the following binomials using combination notation. Remember that the first and last term have coefficients of 1.

$$(ax+b)^{0} =$$
$$(ax+b)^{1} =$$
$$(ax+b)^{2} =$$
$$(ax+b)^{3} =$$

• The pattern established in this problem can be generalized as the Binomial Theorem. State the Binomial Theorem by writing the first two and last two terms of the expanded binomial $(ax + b)^n$ using combination notation.

 $(ax+b)^n =$

Extra Problems

Use the Binomial Theorem to expand the following binomials.

1.
$$(6x + 1)^5$$

- 2. $(x+7)^6$
- 3. $(3x + 5)^4$
- 4. $(7x + 4)^8$