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Objectives  

The aim is for students to become familiar with how a probability model can be used to simulate a 
random phenomenon and use the simulation results to explore a problem where the solution is 
counter intuitive.  

Vocabulary 

Simulation, trial, long run proportion, conditional probability, Bayes’ theorem.  

About this lesson 

Students use the probability model to simulate a large number of trials and use the long run 

proportion of successful outcomes to make conjectures about the theoretical probabilities and 

why the counter intuitive winning strategy and probabilities arise. 

Introduction 

The probability puzzle which has come to be known as the 

Monty Hall problem is named after the original host of the 

American game show Lets Make a Deal. A solution to this puzzle 

was published in Parade magazine in 1990, sparking 

considerable controversy. Some mathematicians refused to 

believe the solution and wrote letters of complaint to the 

magazine.  

Posing the problem 
Suppose that a game show includes a game in which a contestant is shown 3 closed doors. 

• A prize is hidden behind one of the doors. 

• 'No prize' behind the other two doors. 

• The contestant is invited to choose a door. 

• The host then opens a door not chosen by the contestant to reveal 'No Prize'. 

• The contestant is invited to either stay with the initial choice or switch to the other closed 
door. 

• The contestant wins the prize if they choose the door that hides the prize. 
 

What should the contestant do to give themselves the greatest chance of winning the prize?  
1. Switch their choice of door.   
2. Stay with their initial choice.   
3. 'Staying' or 'switching' makes no difference to the probability of winning the prize. 
 

Question 1 
Which of the three options above do you think is correct? Briefly explain why you think that option 
is correct. (Student answers will vary). 
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2  Probability Simulation – Monty Hall Problem 

Simulating the problem 
In this activity, you will use random number, Lists and Spreadsheet, and Data and Statistics 
features of TI-Nspire to model the problem and observe graphical displays of the outcomes when 
the simulated game is repeated many times.  
 

Assumptions in the simulation 

• The door with the prize is labelled Door 1 and the doors with ‘No prize’ labelled Doors 2 and 3 
(these are NOT necessarily the first, second and third doors, from left to right). 

• If the contestant's initial choice is Door 1, the host makes a random choice between Door 2 or 
Door 3 to be opened.  

• If the contestant's initial choice is Door 2, the host opens Door 3, and vice versa. 

• A single trial in the simulation consists of selecting a door at random (to represent the 
contestant’s initial choice), followed by randomly selecting another door which is neither the 
initial choice nor Door 1 (to represent the host’s selection). The output shows the outcome for 
‘staying’ and for ‘switching’. 

• A favourable outcome consists of the contestant’s final selection being the door hiding the 
prize. 

• There are 100 trials in each pass of the simulation. These will initially be looked at one trial at a 
time. Later in the activity, the results of repeated passes of the simulation will be aggregated to 
observe the long run outcome for a very large number of trials.  

 

Note to teachers on setting up the simple simulation for 100 trials  
The simulations in the TI-Nspire document ‘Monty Hall_simulation’ have been constructed using 
built-in features of TI-Nspire (no coding involved) and are ready for students to use. 
For teachers who may wish to create their own similar simulations, the instructions below show 
how a basic simulation can be set up. Further embellishments (such as sliders) can then be made 
to ‘jazz up’ the basic simulation. 
Two key commands are 
- Random integer (syntax: randInt(lowBound, upBound [,#Trials]) ) 
- ifFn (syntax: ifFn(BooleanExpr, Value_If_true [,Value_If_false])) 
 

Simulate 100 trials 

 

Column A: Contestant's initial choice  

Column B: Door opened by Host  

Column C: Result if contestant stays 

Column D: Result if contestant switches 

Cell e2: Count the wins if 'stay'. Input:                   

=countif('stay,"win")                              

Cell e4: Count the wins if 'switch'. Input 

=countif('switch,"win") 

• The formulas for columns B, C & D need to be filled down to cells B100, C100 & D100, as 
follows. 

• Enter the formulas in cells B1, C1 and D1.  

• Select cell B1, hold down the <shift> key and arrow across to cell D1. 

• Open the context menu (on the software, right mouse click; on the handheld, press <ctrl> + 
<menu>). Select ‘Fill’ and press the down arrow to cells B100, C100 & D100. Press <enter>.  

• To return to the top of the spreadsheet, press <ctrl> + <7>.  
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3  Probability Simulation – Monty Hall Problem 

• Note that in cells e2 and e4, the apostrophe(‘) before ‘stay and ‘switch 

indicate that these are column references.  

• For a new set of 100 trials, select ‘cell A=’ (as shown). Press <enter> + <enter>.  

• For a dotplot of results, add a ‘Data and Statistics’ page. Press <Tab> and select ‘Stay’ from the 
pop-up menu on the horizontal axis. Press <menu>. Select: 2.Plot Properties > 5.Add X variable 
> Switch. 

• To change the dotplot to a bar chart, press <menu>. Select: 1.Plot Type > Bar chart. Hover over 
the bars to display the count and percentage of favourable and unfavourable outcomes for the 
‘stay’ and ‘switch’ strategies.  

 
Success fractions for ‘stay’ and ‘switch’ strategies 
Open the TI-Nspire document ‘Monty Hall_simulation’. Navigate to page 2.3.  

Page 2.3 is where the simulation calculations are taking place. 

Page 2.4 shows graphically the count of favourable outcomes for 

the ‘stay’ and ‘switch’ strategies. 

success fractions for 'stay' and 'switch' strategies, where                                       

success fraction =
favourable outcomes

number of trials
.                                                        

 

Use the slider labelled 'game' to observe results one trial (game) at a time on pages 2.4 and 2.5. To 
reset, edit the value to 'game=0' (zero).  
To obtain a new set of 100 trials, increase the ‘repeat’ slider value by 1. 
Observe change in proportion as the number of trials increase. 
  
Question 2 
Observe changes in the success fractions on page 2.5 as the number of trials (games) increases 
from 1 to 100.  
a. Comment on the appearance and value of the success fractions as the number of trials 

increases.  
Sample answer. As the number of trials increase, the success fraction converges towards 0.33  
for the ‘stay’ option and towards 0.67 for the ‘switch’ option.  

b. Use the ‘repeat’ slider to select 100 new trials. Comment on comparisons between the success 
fraction graphs for different sets of 100 trials.  
Sample answer. Although the patterns differ between sets of 100 trials, in all cases convergence 
towards 0.33 for ‘stay’ 0.67 for ‘switch’ is observed. 

  
Question 3 
Based on your observations in the counts and success fractions for several sets of 100 trials, 
comment on whether the ‘stay, or the ‘switch’ option is more advantageous, or whether there is 
no advantage to either of these strategies. 
Sample answer. The ‘switch’ option is clearly more advantageous. 
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4  Probability Simulation – Monty Hall Problem 

 
Question 4 
On page 2.5, click on each of the green horizontal lines.  
a. What are the equations of these lines? 

Sample answer. 𝑦 = 1/3 and 𝑦 = 2/3. 
b. What behaviour are the success fractions for the ‘stay’ and ‘switch’ strategy showing with 

respect to these two lines, for any of the sets of 100 trials? What is the significance of this 
behaviour?  
Sample answer. Convergence of the success fractions towards these lines as the number of 
trials increases is consistent with the theoretical probabilities are 1/3  for the ‘stay’ option and 
2/3 for the ‘switch’ option. 

Question 5 
On page 2.5, set the slider ‘game=100’. The horizontal red lines show the mean (average) of the 
success fraction for the 100 trials. Comment on the comparison between the red and green 
horizontal lines for different sets of 100 trials. 
Sample answer. For 100 trials, the mean success fractions coincide with the lines with equations 
𝑦 = 1/3 and 𝑦 = 2/3.  
 
Long run proportion  
Long run proportion is the ratio of favourable outcomes to the total number of trials in the 
experiment after conducting a very large number of trials. 

On page 3.4 the results of repeated passes of the simulation of sets 

of 100 trials is captured. The results are aggregated (combined) to 

observe the behaviour of favourable outcomes for a very large 

number of trials.  

On page 3.5, use the slider labelled 'n' to add new passes of the 

simulation of 100 trials. The blue dots on the graph represent the 

number of wins in 100 trials using the ‘stay’ strategy and the 

orange dots represent the number of wins in 100 trials using the 

‘switch’ strategy. Observe the changes in the success fraction for a 

large number of sets of 100 trials.                                                                       

 
To RESET: Edit slider to 'n=0'. 

Then, on page 3.4 select each 

cell with 'capture' in the 

formula and press <enter> + 

<enter>. This is a quick way to 

clear data.   

Question 6 
a. What are the equations of the two horizontal green lines on page 3.5? 

Sample answer. 𝑦 =
1

3
× 100 and 𝑦 =

2

3
× 100 

b. Based on the long run proportion observed in this part of the simulation, what is your best 
estimate of the theoretical probability of winning the prize for the 

i. ‘stay’ strategy  Sample answer. 1/3 
ii. ‘switch’ strategy Sample answer. 2/3 

c. In the long run, which of the two strategies will give contestants the greater chance of winning 
the prize? 
Sample answer. In the long run, the contestants are twice as likely to win the prize if they 
‘switch’. 
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5  Probability Simulation – Monty Hall Problem 

Question 7 
Imagine that a student gave the following answer to Question 1 above. 

'Staying' or 'switching' makes no difference to the probability of winning the prize. The reason 
is that, suppose the contestant initially chooses the middle door and the host opens the door 
on the left to reveal ‘No prize’. There are two closed doors remaining. Therefore, whether the 
contestant stays with the middle door or switches to the door on the right, there is a 
probability of 0.5 that the prize will be behind that door.  

a. Do the results of the simulation support the student’s prediction that ‘stay’ or ‘switch’ are 
equally likely to result in winning the prize? 
Sample answer. Not consistent with simulation results (which are not close to 0.5). 

b. If not, explain why the prize is not equally likely to be behind either door after the host opens a 
door with ‘No prize’?  

Sample answer. This is because the host does not open the door at random. The door opened by 
the host depends on the contestant's initial choice and on the location of the prize. Therefore, 
once a door is opened to reveal ‘No prize’, there is a reduced sample space; it is now a matter of 
conditional probability (i.e. the contestant can consider their choice given the new information). 
The assumption of independence for each of the doors no longer holds. 
 

Extension questions 
Conditional probability and Bayes’ Theorem 
 

Question 8 
The definition of conditional probability for events 𝐴 and 𝐵, where Pr(𝐴) ≠ 0 and Pr(𝐵) ≠ 0 may 

be expressed as Pr(𝐴|𝐵) =
Pr(𝐴𝐵)

Pr(𝐵)
 or Pr(𝐵|𝐴) =

Pr(𝐴𝐵)

Pr(𝐴)
. 

Use the above equations to show that Pr(𝐴|𝐵) =
Pr(𝐵|𝐴)Pr(𝐴)

Pr(𝐵)
. This is known as Bayes’ theorem. 

 

Question 9 
Assume the following. 
- The contestant chooses door 1. 
- The host then opens door 2 to reveal no prize. 
- Event 𝐴 is ‘the prize is behind door 1’ 
- Event 𝐵 is ‘the host opens door 2 to show no prize’ 
a. Determine the following for events 𝐴 and 𝐵. 

i. Pr(𝐴) 

Answer. 
1

3
 

ii. Pr(𝐵|𝐴) (i.e. Pr(host opens door 2 … 𝐠𝐢𝐯𝐞𝐧 prize is behind door 1)) 

Answer. 
1

2
 (host opens one of either door 2 or door 3) 

 

b. Use the fact that there are 3 doors and that the host will not reveal the prize and will not open 
the door chosen by the contestant to explain why 

Pr(𝐵) = (
1

3
×

1

2
) + (

1

3
× 0) + (

1

3
× 1) 

Answer. This is the likelihood of the host opening door 2 considering the possibilities of the 
prize being behind door 1 or door 2 or door 3.  

c. Use Bayes’ theorem to determine the probability that the prize is behind door 1 given that the 
host opens door 2. That is, Pr(𝐴|𝐵). 

Answer. 
1

3
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6  Probability Simulation – Monty Hall Problem 

d. Hence determine the probability that the contestant wins the prize if they stay with the initial 
choice (door 1) and the probability of winning the prize if they switch to the other closed door. 

Answer. stay 
1

3
 , switch 1 −

1

3
=

2

3
. 

 
 
 
 
 
  


