Triangle Area

Student Activity

7 8 9 10 11 12

TI-Nspire™

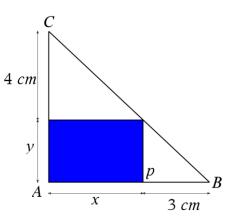
20 min

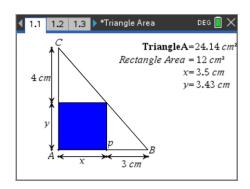
Teachers Teaching with Technology'

Introduction

A right-angled triangle contains a rectangle. The base of the triangle is equal to the length of the rectangle (x) plus an additional 3cm in length. The height of the triangle is equal to the height of the rectangle (y) plus an additional 4cm in length.

In this activity we are first interested in the area of the rectangle, then the area of the triangle which circumscribes the rectangle.


The TI-Nspire file: Triangle Area contains a dynamic representation of the setup shown opposite.


Exploring

Open the TI-Nspire document: Triangle Area

Point P is dynamic and can be used to change the shape of the rectangle and the circumscribed triangle such that the triangle will continue to follow the properties outlined in the introduction.

Drag point P and observe what happens to the area of the rectangle and the area of the triangle.

Question: 1

What do you notice about the area of the rectangle? Use your geometry knowledge to prove the result.

Question: 2

Determine an expression for the area of the triangle in terms of *x* and *y*.

Question: 3

Use your results from Question 1 and 2 to express the area of the triangle in terms of *x* only.

Whenever you move point P, data for the area of the triangle and base of the rectangle (x) is automatically captured on page 1.4 of this document.

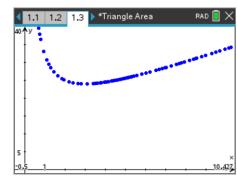
Sample shown opposite.

The variables are called: **rect_base** (*x*) and **tri_area** (triangle area).

If page 1.4 does not contain many data values (or none at all), drag point P on page 1.1 around to populate the spreadsheet.

◀ 1.	2 1.3 1.4	▶ *Triangle Area		RAD 📘	×
	A rect_b	B tri_area ⊂	D		
=	=capture(=capture(1
1	4.00652	24.5057			
2	4.20778	24.6933			
З	4.30841	24.7946			
4	4.45935	24.9551			
5	4.55998	25.0673			•
С				•	F

© Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.



Navigate to page 1.3 (Graph Application).

The data for the triangle area and base measurement should be displayed as a scatterplot.

Graph your function from Question 3 to make sure it passes through the data.

Question: 4

Use calculus to determine the minimum area of the triangle.

Question: 5

Maximum and minimum area problems associated with geometry often occur for 'regular' shapes. For example; the maximum area for a rectangle with fixed perimeter occurs when the rectangle is a square. It is possible for triangle ABC to be 'half a square' if x = 4 and y = 3. Adjust point P to see that this is true, then move point P to the point where the area of triangle ABC is a minimum and explore what is happening at that point.

