Sums of Rectangle Areas to Approximate Integrals

by Dave Slomer

Fer| F2 FY FEr] Fax [FPo53
Zoora| TFack|Redr arh|Math{Dr aw|Fen):-

Fir
Tools

F|g 1 |HrIR FAD AUTO FAR
Areas of regions such as the one in figure 1 cannot be computed using formulas from
geometry. But bynscribing or circumscribingenough rectangles (or trapezoids) whose
areas approximatie area of the shaded region, we can get as close as netedisary
exact area. (You might want to scan figures 3a through 4b now to get a preview of the
process.) In general, the area of a region boundegd=li{x), x = a, x = b, and thex-axis

is symbolized af:f (x)dx (read “theintegral of f of x with respect to xfroma to b").

The first step in approximating such an area gadition (subdividé the interval §,b]
into n equal pieces (callesbinterval} by locatingn + 1 subdivision points(Refer to
the tick marks on the-axis in figure 2b.) The length of each subinterval is calbed

which, therefore, is always defined By = M. If n =2 or 4 or something not much
n

bigger, it is advisable to perform the process by hand to get a feel for this important
process. But i = 10 or more, you need help from a TI-89.

The TI-89 “sequence functiorseqcan help create the partition. It has the general form
seg6equence formujaariable in the formulgariable start valugend valuestep.

It returns dist of values enclosed in “curly brackets{4—according to theequence

formula, starting at theariable start valuggoing up bystep and stopping at thend

value For example, the commasdq(x,x,1,2,1/4pives the sequeneg =x forx =110 2

by steps of 1/4—five-coordinates, as shown in figure 2a. {To get decimals instead of

fractions, make the step a decirualpres<+)ENTER] (=])].}
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These values of are the endpoints of the bases of the rectangles whose areas will be

used to approximatf:f (x)dx. Note that the left-hand edge of the regis,1, and the

right-hand edgex = 2, are thestart valueandend valuesn theseqcommand in figure

2a. Also note thaf\x = ZT_l = % thestepused in theseqcommand. Finally, note that
while n = 4, there are + 1 (that is, 5) subdivision points, as shown onxthgis in figure
2b, where the boundaries of the region of figure 1 have been displayed in the window
[1,2] by [-.1,1.1] withxscl = .25, which iAx. (It is not necessary to makscl = Ax.)



To begin constructing the approximating rectangles, construct vertical line segments,
extending from each subdivision pomt to the curve (see figure 3a)
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This gives 3 sides (bottom and vertical sides) of each of 4 rectangles. Do you see that?

The final geometric step is to draw tH gldes of each rectangle. How to draw it

depends on whether the approximation is to be done leftngght, or midpointsums.

In figure 3b, you see 4 rectangles that would compute the area sum akedétkefigles,
so-called because the rectangles’ heights are function \atlties left endpoint of each
subinterval Do you see that the first two rectangles’ areas are a little too small, while the
last two are a little too big?

In figures 4a and 4b are 4 rigimd 4 midpointectangles. Note that the heights of the
midpoint rectangles are computed at mldgouﬁsublntervals Do you see that?
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Do you see (fig. 4a) that the first two right rectangles’ areas are a little too big, while the
last is too small, and the third is too close to call? Do you see that each midpoint
rectangle’s area is a lot closer to the actual area because of being partly above (too big)
and partly below (too small) the curve (although the middle two are too close to call)?

Computing the area sums by hand is easy enough with only 4 rectangles, although it is a
little tedious. But no matter how many approximating rectangles are used, the '89 can
help with itsseqcommand.

The commandeq(x,x,1,2,1/4jhat was used to generate the partition earlier involwes 5
coordinates, but there are only 4 rectangles. Study figures 3a through 4b, noting that, for
left sums, the rightmost endpoint does not enter into the computation; for right sums, the
leftmost endpoint isn’t used; and for midpoint sums, only midpoints of subintervals are
used. For a change, symbols might make it clearer than numbers. Consider the screen in
figure 5a. Prior commands had been given to store Jjr#ontob, and 1/4 intalx [dx

muse be used instead Ak]. Decimals were obtained by pressinfENTER]
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Note that, in figure 5a, as expected from the graphs in figures 3b through 4b:

* The firstseqcommand includes 1 but not 2 (because the ending vatuéxsthe
next-to-lastsubdivision point) and so givescoordinates for a leBum.

* The second does not include 1 (because the starting vatidxsthe second
subdivision point) but does include 2 and so gikresordinates for a righgum.

e The third includes neither 1 nor 2 because it stads-@t/2 (the midpoint of the first
subinterval) and ends btdx/2 (the midpoint of the last subinterval) and so gixes
coordinates for a midpoirsium, hitting each subinterval’s midpoint en route, since the
increment idx. Think about this one for a moment. See figure 4b for clarification.
Drawing dotted line segments from the midpoint of each subinterval to the curve and
noting that this is the height of the rectangles may help.

Having constructed the rectangles and having decided which type of approximating sum
to compute (left, right, or midpoint), you can make the 89 finaeh &kights at once by

one commandyl(ans(1)) See figure 5b for details, where a left sum has been used with
y1(X) = sin(x). Once you have all of the heights available as a list, all that remains is to
multiply each by the basedx) andsum the results by typingum(ans(1)*dx)and to

to get a decimadpproximation. (See figure 6a)
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So, using 4 left rectanglefizsin(x)dx ~ .94,

Exercise 1 Approximate J' fsin(x)dx with 4 rightrectangles.

Defineyi(x) = sin(x) and follow the process shown in figure 6a, but modifysduwp
command to give righhstead of left endpoints of subintervals. (Since the left sum was
about 1, you would expect the result here to be around 1, too, wouldn’t you?)

. . 2 . . o
Exercise 2Approximate sin(x)dx with 4 midpointrectangles.

Exercise 30n any given subinterval, trapezoittsuld be constructed instead of
rectangles by drawing line segments from the point on the curve at the left endpoint of



the subinterval to the point on the curve at the right endpoint (see fig. 7). It can be shown
that the area of any such trapezoid is the average of the areas of the left and right
rectangles on that interval. (Make a sketch and convince yourself of that.) Hence, the
average of the areasmofeft andn right rectangles will always equal the areanof

trapezoids. The trapezoid area sum would seem to not miss by much at all, since you can
hardly distinguish curve from upper trapezoid side in figure 7. Compute the sum of 4
trapezoids by averaging the left and right sums.
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Exercise 4Compute the exasalue oszsin(x)dx by using the TI-89's built i@ key

(@nd][7]) by typing@yl(x),x,l,Z) Do it again, but pres$s|[ENTER] to see a very accurate

decimal approximation of the exact value so you can rank the left, right, midpoint and
trapezoid approximations from worst to best. Do you think it will alwse/so ordered?

Exercise 5Double the number of rectangles from 4 to 8, chandimfyjom 1/4 to 1/8.
Repeat the approximations—Ieft, right, midpoint, and trapezoid—and rank again from
worst to best. The order changed. Why do you think this happened?

Exercise 6Clearly, the largen is, the smalleAx will be, and the better the
approximation. Suppose you did not know the exact valtj’?2 sin(x)dx. How would

you know how close you were for the giveandAx? Get the most powerful automated
help you can find (whether a TI-89 program, sucRastAprx below, or the text file

shown below, or a more powerful PC program, such as Derive™, that you might have
access to). Use it to compute the left, right, midpoint, and trapezoid sums for 4,8,16, 32,
64, ... subintervals. Fill in the table below, stopping when you are sure that you have 4
decimal place accuraggccuracy to ten-thousandthgvhy did you stop when you did?
Which method produced the desired accuracy first? Compare the approximation to the
exact value from Exercise 4. Did you stop too soon? Conclusions?
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While not very accurate in comparison to trapezoid and midpoint sums, sums of left and
right rectangle areas are still important to approximate integrals for two reasons.
(1) Their average gives a trapezoid sum that is usually much more accurate than either
left or right sums (but don’t forget the method accuracy switch in Exercises 4 and 5).
(2) The much more accurate, harder to apply midpoint sums are made considerably easier
by studying the easier to apply left and right sums first.
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(a,b,n)
Prgm RectAprx
setMode ("Exact/Approx","Approximate")
@-1:0-m:G-r
(b-a) /n->dx
For x,a,b-dx/2,dx
T+dx*y1 (x) -1
r+dx*y1 (x+dx)-r
m+dx*y1 (x+dx/2)-m
EndFor
Disp "n,1,r,m, and t:"
Disp n,1,r,m, (1+r) /2.
EndPrgm
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