
Sums of Rectangle Areas to Approximate Integrals
by Dave Slomer

Fig. 1
Areas of regions such as the one in figure 1 cannot be computed using formulas from
geometry. But by inscribing or circumscribing enough rectangles (or trapezoids) whose
areas approximate the area of the shaded region, we can get as close as necessary to the
exact area. (You might want to scan figures 3a through 4b now to get a preview of the
process.) In general, the area of a region bounded by y = f(x), x = a, x = b, and the x-axis

is symbolized as ()∫
b

a
dxxf

 (read “the integral of f of x with respect to x, from a to b”).

The first step in approximating such an area is to partition (subdivide) the interval [a,b]
into n equal pieces (called subintervals) by locating n + 1 subdivision points. (Refer to
the tick marks on the x-axis in figure 2b.) The length of each subinterval is called ∆x,

which, therefore, is always defined by
n

ab
x

−=∆ . If n = 2 or 4 or something not much

bigger, it is advisable to perform the process by hand to get a feel for this important
process. But if n = 10 or more, you need help from a TI-89.

The TI-89 “sequence function” seq can help create the partition. It has the general form

seq(sequence formula,variable in the formula,variable start value,end value,step).
It returns a list of values enclosed in “curly brackets”—{ }—according to the sequence
formula, starting at the variable start value, going up by step, and stopping at the end
value. For example, the command seq(x,x,1,2,1/4) gives the sequence ax = x for x = 1 to 2
by steps of 1/4—five x-coordinates, as shown in figure 2a. {To get decimals instead of
fractions, make the step a decimal [or press �� (p)].}

Fig. 2a Fig. 2b
These values of x are the endpoints of the bases of the rectangles whose areas will be

used to approximate ()∫
b

a
dxxf

. Note that the left-hand edge of the region, x = 1, and the

right-hand edge, x = 2, are the start value and end values in the seq command in figure

2a. Also note that
4

1

4

12 =−=∆x , the step used in the seq command. Finally, note that

while n = 4, there are n + 1 (that is, 5) subdivision points, as shown on the x-axis in figure
2b, where the boundaries of the region of figure 1 have been displayed in the window
[1,2] by [-.1,1.1] with xscl = .25, which is ∆x. (It is not necessary to make xscl = ∆x.)

To begin constructing the approximating rectangles, construct vertical line segments,
extending from each subdivision point to the curve (see figure 3a).

Fig. 3a Fig. 3b
This gives 3 sides (bottom and vertical sides) of each of 4 rectangles. Do you see that?

The final geometric step is to draw the 4th sides of each rectangle. How to draw it
depends on whether the approximation is to be done using left, right, or midpoint sums.
In figure 3b, you see 4 rectangles that would compute the area sum of 4 left rectangles,
so-called because the rectangles’ heights are function values at the left endpoint of each
subinterval. Do you see that the first two rectangles’ areas are a little too small, while the
last two are a little too big?

In figures 4a and 4b are 4 right and 4 midpoint rectangles. Note that the heights of the
midpoint rectangles are computed at midpoints of subintervals. Do you see that?

 Fig. 4a Fig. 4b
Do you see (fig. 4a) that the first two right rectangles’ areas are a little too big, while the
last is too small, and the third is too close to call? Do you see that each midpoint
rectangle’s area is a lot closer to the actual area because of being partly above (too big)
and partly below (too small) the curve (although the middle two are too close to call)?

Computing the area sums by hand is easy enough with only 4 rectangles, although it is a
little tedious. But no matter how many approximating rectangles are used, the ’89 can
help with its seq command.

The command seq(x,x,1,2,1/4) that was used to generate the partition earlier involves 5 x-
coordinates, but there are only 4 rectangles. Study figures 3a through 4b, noting that, for
left sums, the rightmost endpoint does not enter into the computation; for right sums, the
leftmost endpoint isn’t used; and for midpoint sums, only midpoints of subintervals are
used. For a change, symbols might make it clearer than numbers. Consider the screen in
figure 5a. Prior commands had been given to store 1 into a, 2 into b, and 1/4 into dx [dx
muse be used instead of ∆x]. Decimals were obtained by pressing ��.

Fig. 5a Fig. 5b
Note that, in figure 5a, as expected from the graphs in figures 3b through 4b:

• The first seq command includes 1 but not 2 (because the ending value is b-dx, the
next-to-last subdivision point) and so gives x-coordinates for a left sum.

• The second does not include 1 (because the starting value is a+dx, the second
subdivision point) but does include 2 and so gives x-coordinates for a right sum.

• The third includes neither 1 nor 2 because it starts at a+dx/2 (the midpoint of the first
subinterval) and ends at b-dx/2 (the midpoint of the last subinterval) and so gives x-
coordinates for a midpoint sum, hitting each subinterval’s midpoint en route, since the
increment is dx. Think about this one for a moment. See figure 4b for clarification.
Drawing dotted line segments from the midpoint of each subinterval to the curve and
noting that this is the height of the rectangles may help.

Having constructed the rectangles and having decided which type of approximating sum
to compute (left, right, or midpoint), you can make the ’89 find all n heights at once by
one command: y1(ans(1)). See figure 5b for details, where a left sum has been used with
y1(x) = sin(x). Once you have all of the heights available as a list, all that remains is to
multiply each by the base (dx) and sum the results by typing sum(ans(1)*dx) and to
press �� to get a decimal approximation. (See figure 6a)

Fig. 6a

So, using 4 left rectangles, ()∫
2

1
sin dxx ≈ .94.

Exercise 1: Approximate ()∫
2

1
sin dxx with 4 right rectangles.

Define y1(x) = sin(x) and follow the process shown in figure 6a, but modify the seq
command to give right instead of left endpoints of subintervals. (Since the left sum was
about 1, you would expect the result here to be around 1, too, wouldn’t you?)

Exercise 2: Approximate ()∫
2

1
sin dxx with 4 midpoint rectangles.

Exercise 3: On any given subinterval, trapezoids could be constructed instead of
rectangles by drawing line segments from the point on the curve at the left endpoint of

the subinterval to the point on the curve at the right endpoint (see fig. 7). It can be shown
that the area of any such trapezoid is the average of the areas of the left and right
rectangles on that interval. (Make a sketch and convince yourself of that.) Hence, the
average of the areas of n left and n right rectangles will always equal the area of n
trapezoids. The trapezoid area sum would seem to not miss by much at all, since you can
hardly distinguish curve from upper trapezoid side in figure 7. Compute the sum of 4
trapezoids by averaging the left and right sums.

Fig. 7

Exercise 4: Compute the exact value of ()∫
2

1
sin dxx by using the TI-89’s built in ∫ key

(�M) by typing ∫ y1(x),x,1,2). Do it again, but press �� to see a very accurate

decimal approximation of the exact value so you can rank the left, right, midpoint and
trapezoid approximations from worst to best. Do you think it will always be so ordered?

Exercise 5: Double the number of rectangles from 4 to 8, changing dx from 1/4 to 1/8.
Repeat the approximations—left, right, midpoint, and trapezoid—and rank again from
worst to best. The order changed. Why do you think this happened?

Exercise 6: Clearly, the larger n is, the smaller ∆x will be, and the better the

approximation. Suppose you did not know the exact value of ()∫
2

1
sin dxx . How would

you know how close you were for the given n and ∆x? Get the most powerful automated
help you can find (whether a TI-89 program, such as RectAprx below, or the text file
shown below, or a more powerful PC program, such as Derive™, that you might have
access to). Use it to compute the left, right, midpoint, and trapezoid sums for 4,8,16, 32,
64, … subintervals. Fill in the table below, stopping when you are sure that you have 4
decimal place accuracy (accuracy to ten-thousandths). Why did you stop when you did?
Which method produced the desired accuracy first? Compare the approximation to the
exact value from Exercise 4. Did you stop too soon? Conclusions?

n Left sum Right sum Midpoint sum Trapezoid sum
4
8
16
32
64
128
256

While not very accurate in comparison to trapezoid and midpoint sums, sums of left and
right rectangle areas are still important to approximate integrals for two reasons.
(1) Their average gives a trapezoid sum that is usually much more accurate than either

left or right sums (but don’t forget the method accuracy switch in Exercises 4 and 5).
(2) The much more accurate, harder to apply midpoint sums are made considerably easier

by studying the easier to apply left and right sums first.

Fig. 8
�
�
�B�C�O��
1SHN�3FDU"QSY�
TFU.PEF��&YBDU�"QQSPY���"QQSPYJNBUF���
çÙM�çÙN�çÙS�
�C�B��OÙEY�
'PS�Y�B�C�EY���EY�
��M
EYâZ��Y�ÙM�
��S
EYâZ��Y
EY�ÙS�
��N
EYâZ��Y
EY���ÙN�
&OE'PS�
%JTQ��O�M�S�N��BOE�U���
%JTQ�O�M�S�N��M
S�����
&OE1SHN

Calculus Generic Scope and Sequence Topics: Definite and Indefinite Integrals
NCTM Standards: Number and operations, Algebra, Geometry, Measurement, Problem solving,

Connections, Communication, Representation

