Name	
Class	

Part 1 – Warm up

- **1. a.** Where is $f(x) = e^x$ positive?
 - **b.** Where is $f(x) = e^{-x}$ positive?

ExponentialFastDerivative.tns

Exponentially Fast Derivative

- **2.** What is the domain of $\ln(x)$?
- 3. Where is $y = \ln(x)$:
 - a. Positive?
 - **b.** Positive number less than 1?
 - **c.** Greater than 1?

Part 2 – Investigate the derivative of e^x

On page 3.2, display the slope of the tangent line to the point on the graph of e^x . Select the **Tangent Line** tool (**MENU > Points & Lines > Tangent Line**) and click on the marked point on the graph. Then select **MENU > Measurement > Slope** and click the tangent line twice. Press play.

4. What is the derivative of e^{x} ?

5.
$$\frac{d}{dx}(e^{2x}) =$$

 $\frac{d}{dx}(e^{3x}) =$
 $\frac{d}{dx}(e^{5x}) =$
 $\frac{d}{dx}(e^{5x}) =$
 $\frac{d}{dx}(e^{-7x}) =$
 $\frac{d}{dx}(e^{-7x}) =$
 $\frac{d}{dx}(e^{-2x^{10}}) =$

What is the pattern?

What is the pattern?

Exponentially Fast Derivative

7. Try the follow problems using the Chain Rule. Then use the *Calculator* application on page 4.4. Record both answers and explain why the two solutions are equivalent.

	By Hand	Using Technology	Explanation of Equivalence
a.	$\frac{d}{dx}\left(e^{4x^{0.5}}\right) =$		
b.	$\frac{d}{dx}\left(e^{e^{3x}}\right) =$		
c.	$\frac{d}{dx}\left(\sin\left(e^{-2x}\right)\right) =$		
d.	$\frac{d}{dx}\left(\cos^{3}\left(e^{x}\right)\right) =$		
e.	$\frac{d}{dx}\left(e^{\ln(5x)}\right) =$		

Part 3 – Investigate a^x

- **8.** On page 5.1, use (err) + (enter) to find the decimal approximation for the following numbers.
 - **a.** ln(2) **b.** ln(*e*) **c.** ln(4)

On page 5.2 press play or grab and slide the white point on the slider. Observe the relationship between the bold graph of the function a^x and its derivative.

To understand how the derivative of 2^x is derived on page 5.4, you need to know the derivative of a constant times *x*, even when it might not look like a constant at first glance.

9. a.
$$\frac{d}{dx}(\pi x) =$$
 b. $\frac{d}{dx}(x \ln(2)) =$

Exponentially Fast Derivative

- **10.** Differentiate the following functions and compare the decimal approximation solution with the graph explored on page 5.2.
 - **a.** $y = \left(\frac{3}{2}\right)^{x}$ **b.** $y = 3^{x}$ **c.** $y = 4^{x}$

e. $y = 2 \cdot 5^{x}$

d. $y = 0.5^{x}$

- 11. What is the rule applied to exponential functions?
- **12.** Try the following questions on your own first. Then use the *Calculator* application on page 5.9 and explain why the two solutions are equivalent.

	By Hand	Using Technology	Explanation of Equivalence
a.	$\frac{d}{dx} \left(3^{x^7} \right) =$		
b.	$\frac{d}{dx}(5^{2x+3}) =$		
c.	$\frac{d}{dx}\left(\left(\frac{3}{2}\right)^{2x+2}\right) =$		
d.	$\frac{d}{dx}\left(\left(\frac{1}{2}\right)^{3x}\right)$		

Exponentially Fast Derivative

Part 4 – Extension/Homework: Exam practice questions

- **13. a.** When playing a video game, a button is pressed causing a point to move along the *x*-axis described by $x(t) = -2t + 3 + e^{1-2t}$, where *t* is time. Find the acceleration when t = 2.
 - **b.** If the positive *x* direction is forward, describe the speed of the particle at t = 2. Explain your reasoning.

14. Let $f(x) = \ln(e^{-5x} + 2x - 3)$. Find f'(0).

15. Find f'(x) if $f(x) = e^{-\cos(x)}$

16. Let $f(x) = x \cdot e^{-2x}$.

a. Solve for x when f'(x) = 0.

b. Solve for *x* when f''(x) = 0.