\qquad
\qquad

Part 1 - Warm up

1. a. Where is $f(x)=e^{x}$ positive?
b. Where is $f(x)=e^{-x}$ positive?
2. What is the domain of $\ln (x)$?
3. Where is $y=\ln (x)$:
a. Positive?
b. Positive number less than 1?
c. Greater than 1 ?

Part 2 - Investigate the derivative of e^{x}

On page 3.2, display the slope of the tangent line to the point on the graph of e^{x}. Select the Tangent Line tool (MENU > Points \& Lines > Tangent Line) and click on the marked point on the graph. Then select MENU > Measurement > Slope and click the tangent line twice. Press play.
4. What is the derivative of e^{x} ?
5. $\frac{d}{d x}\left(e^{2 x}\right)=$
$\frac{d}{d x}\left(e^{3 x}\right)=$
$\frac{d}{d x}\left(e^{5 x}\right)=$
$\frac{d}{d x}\left(e^{-7 x}\right)=$

What is the pattern?
6. $\frac{d}{d x}\left(e^{x^{2}}\right)=$
$\frac{d}{d x}\left(e^{x^{3}}\right)=$
$\frac{d}{d x}\left(e^{5 x^{4}}\right)=$
$\frac{d}{d x}\left(e^{-2 x^{10}}\right)=$

What is the pattern?

Exponentially Fast Derivative

7. Try the follow problems using the Chain Rule. Then use the Calculator application on page 4.4. Record both answers and explain why the two solutions are equivalent.

By Hand	Using Technology	Explanation of Equivalence
a. $\frac{d}{d x}\left(e^{4 x^{0.5}}\right)=$		
b. $\frac{d}{d x}\left(e^{e^{3 x}}\right)=$		
c. $\frac{d}{d x}\left(\sin \left(e^{-2 x}\right)\right)=$		
d. $\frac{d}{d x}\left(\cos ^{3}\left(e^{x}\right)\right)=$		
e. $\frac{d}{d x}\left(e^{\ln (5 x)}\right)=$		

Part 3 - Investigate \mathbf{a}^{x}

8. On page 5.1, use ©trr) + enter to find the decimal approximation for the following numbers.
a. $\ln (2)$
b. $\ln (e)$
c. $\ln (4)$

On page 5.2 press play or grab and slide the white point on the slider. Observe the relationship between the bold graph of the function a^{x} and its derivative.

To understand how the derivative of 2^{x} is derived on page 5.4 , you need to know the derivative of a constant times x, even when it might not look like a constant at first glance.
9. a. $\frac{d}{d x}(\pi x)=$
b. $\frac{d}{d x}(x \ln (2))=$

Exponentially Fast Derivative

10. Differentiate the following functions and compare the decimal approximation solution with the graph explored on page 5.2.
a. $y=\left(\frac{3}{2}\right)^{x}$
b. $y=3^{x}$
c. $y=4^{x}$
d. $y=0.5^{x}$
e. $y=2 \cdot 5^{x}$
11. What is the rule applied to exponential functions?
12. Try the following questions on your own first. Then use the Calculator application on page 5.9 and explain why the two solutions are equivalent.

By Hand	Using Technology	Explanation of Equivalence
a. $\frac{d}{d x}\left(3^{x^{7}}\right)=$		
b. $\frac{d}{d x}\left(5^{2 x+3}\right)=$		
c. $\frac{d}{d x}\left(\left(\frac{3}{2}\right)^{2 x+2}\right)=$		
d. $\frac{d}{d x}\left((1 / 2)^{3 x}\right)$		

Exponentially Fast Derivative

Part 4 - Extension/Homework: Exam practice questions

13. a. When playing a video game, a button is pressed causing a point to move along the x-axis described by $x(t)=-2 t+3+e^{1-2 t}$, where t is time. Find the acceleration when $t=2$.
b. If the positive x direction is forward, describe the speed of the particle at $t=2$. Explain your reasoning.
14. Let $f(x)=\ln \left(e^{-5 x}+2 x-3\right)$. Find $f^{\prime}(0)$.
15. Find $f^{\prime}(x)$ if $f(x)=e^{-\cos (x)}$
16. Let $f(x)=x \cdot e^{-2 x}$.
a. Solve for x when $f^{\prime}(x)=0$.
b. Solve for x when $f^{\prime \prime}(x)=0$.
