Exponential Growth

by

Mary Ann Connors

Department of Mathematics
Westfield State College
Westfield, MA 01086

Textbook Correlation: Key Topic

- Growth and Decay

NCTM Principles and Standards:

- Process Standard
- Representation
- Connections
- Problem Solving

Exercise 1.

Suppose a population of ants numbered 3,000,000 in 1998 and 3,300,000 in 1999. The ratio of the current generation to the previous generation $\frac{3,300,000}{3,000,000}=1.1$ indicates that the net population growth for the first year is 10%.
a) Assuming the growth rate will be the same every year, what will the population figures be for several years?
b) Assuming the growth rate will be the same every year, what will the population be after 100 years?

Solution:

Although this can be iterated easily by hand or simple repeated multiplication on most calculators, the exploration can be done on the TI-89 (TI-92 Plus).

Given the initial population is $3,000,000$, the model is described by the recursion formula:
$\mathrm{p}_{0}=3,000,000$
$\mathrm{p}_{\mathrm{n}}=1.1 \mathrm{p}_{\mathrm{n}-1}$, where $\mathrm{n}=0,1,2,3 \ldots$ years and p_{n} is the number of ants after n years.
The folllowing analysis includes three methods: numerical, graphical and analytical.

Numerical Analysis

First, press MODE Cursor to the right of "Graph" and select 4: SEQUENCE. Press ENTER twice. Next, go to the $\mathrm{Y}=$ Editor $(\bullet, \mathbf{F} 1)$. For u1(n), type 1.1u1(n-1) and press ENTER. For ui1, type $\mathbf{3 0 0 0 0 0 0}$ and press ENTER.

Set the parameters in the WINDOW Editor (\bullet, F4) as shown below.

To analyze the model numerically, press $\downarrow, \mathbf{F} 4$ for TblSet. Enter $\mathbf{0}$ for "tblStart" and $\mathbf{1}$ for " Δ table." Remember to press ENTER twice.

To widen the width of the cells, press $\mathbf{F 1}$ (Tools), 9:Format, cursor right, choose the cell width and press ENTER.

Cursor down through the table. Pressing $\mathbf{2}^{\text {nd }}$ and the down cursor key will move down one page at a time. To observe long time behavior reset the "tblStart" for large values to save time.

From the limited information on the table, it appears that the population is increasing without bound.

Graphical Analysis

To look at a graphical representation of the model, go to the $\mathbf{Y}=$ Editor ($\downarrow, \mathbf{F} 4)$. Press $\mathbf{2}^{\text {nd }}, \mathbf{F} 2$ for F7 (Axes). Select TIME. Highlight the equation to the right of u1. Press $\mathbf{2}^{\text {nd }}, \mathbf{F 1}$ for $\mathbf{F 6}$ (Style). Select 2:Dot or 3:Square.

Select 1:Line. Next, go to the Window (\downarrow, F2). Set the parameters as illustrated below.

Now GRAPH the model (\bullet, F2). Trace (F3).

From the graph it appears that the population is increasing without bound. Are you convinced?

Analytical Solution

Rewriting the model $\mathrm{p}_{0}=3,000,000, \mathrm{p}_{\mathrm{n}}=1.1 \mathrm{p}_{\mathrm{n}-1}$ in function notation yields $\mathrm{p}(0)=3,000,000, \mathrm{p}(\mathrm{n})=1.1 \mathrm{p}(\mathrm{n}-1)$.
Observe that

$$
\begin{aligned}
& \mathrm{p}(0)=3,000,000 \\
& \mathrm{p}(1)=1.1 \mathrm{p}(0)=1.1(3,000,000) \\
& \mathrm{p}(2)=1.1 \mathrm{p}(1)=1.1[1.1 \mathrm{p}(0)]=1.1^{2} \mathrm{p}(0)=1.1^{2}(3,000,000) \\
& \mathrm{p}(3)=1.1 \mathrm{p}(2)=1.1\left[1.1^{2} \mathrm{p}(0)\right]=1.1^{3} \mathrm{p}(0)=1.1^{3}(3,000,000) \\
& \cdot \\
& \cdot \\
& \mathrm{p}(\mathrm{k})=1.1 \mathrm{p}(\mathrm{k}-1)=1.1\left[1.1^{\mathrm{k}-1} \mathrm{p}(0)\right]=1.1^{\mathrm{k}} \mathrm{p}(0)=1.1^{\mathrm{k}}(3,000,000)
\end{aligned}
$$

In general, we make the conjecture:
The analytical solution of $p(n)=r p(n-1), n=0,1,2 \ldots$, is $p(n)=r{ }^{n} p(0)$.
Verify the conjecture as follows:

$$
\begin{array}{lrl}
\text { Given } & \mathrm{p}(\mathrm{n}) & =\mathrm{r} \mathrm{p}(\mathrm{n}-1), \\
\text { substitute } & \mathrm{r}^{\mathrm{n}} \mathrm{p}(0)=\mathrm{r}\left[\mathrm{r}^{\mathrm{n}-1} \mathrm{p}(0)\right] . \\
\text { Therefore, } & \mathrm{r}^{\mathrm{n}} \mathrm{p}(0)=\mathrm{r}^{\mathrm{n}} \mathrm{p}(0) .
\end{array}
$$

A model like this one with the population growing by the same rate each year is called an exponential model. It is described by a recursive equation and an explicit equation.
The recursive equation is of the form $\mathrm{p}_{\mathrm{n}}=\mathrm{rp}_{\mathrm{n}-1}$, where r is a constant called the population multiplier. The analytical solution, $p(n)=r^{n} p(0)$, where $p(0)$ is the initial population, is an explicit equation describing the same sequence. It is a geometric sequence with a common ratio, r. Exponential models represent positive growth when r is poitive or negative growth (decay) when r is negative. Populations can be comprised of animate or inanimate objects.

Comparison of the Recursive Description and the Explicit Description of an Exponential Growth Model

In the previous example, the analytical solution to
$\mathrm{p}(0)=3,000,000 \mathrm{p}(\mathrm{n})=1.1 \mathrm{p}(\mathrm{n}-1), \mathrm{n}=0,1,2 \ldots$ is
$\mathrm{p}(\mathrm{n})=(1.1)^{\mathrm{n}}(3,000,000)$.
Graph the analytical solution in function mode on the TI-89. Press MODE, 1:Function, ENTER, ENTER. In the $\mathbf{Y}=$ editor $(\star, \mathbf{F} 1)$, enter $\mathbf{1 . 1}^{\wedge} \mathbf{x}^{*} \mathbf{3 0 0 0 0 0 0}$. Set the window $(\star, \mathbf{F} 2)$ as depicted below. Graph $(\star, \mathbf{F 3})$, trace $(\mathbf{F} 3,9)$ and look at the table $(\bullet, \mathbf{F 5})$.

The following screens show the comparison of the recursive description on the left and its analytical solution, an explicit description, on the right.

Answer:

a) The population in $1998=\mathrm{p}(0)=(1.1)^{0}(3,000,000)=3 \times 10^{6}$.

The population in $1999=\mathrm{p}(1)=(1.1)^{1}(3,000,000)=3.3 \times 10^{6}$.
The population in $2000=\mathrm{p}(2)=(1.1)^{2}(3,000,000)=3.63 \times 10^{6}$.
The population in $2001=p(3)=(1.1)^{3}(3,000,000)=3.99 \times 10^{6}$.
The population in $2002=p(3)=(1.1)^{4}(3,000,000)=4.3923 \times 10^{6}$.
b) After 100 years the population will be $\mathrm{p}(100)=(1.1)^{100}(3,000,000)=4.13418 \times 10^{10}$.

Exercise 2:

Consider the model $p(0)=300, p(n)=r \times p(n-1)$ where $n=0,1,2, \ldots$
The explicit description of the model is $p(n)=300 r^{n}$.
Experiment to observe results when $|\mathrm{r}|>1, \mathrm{r}=1$, and $|\mathrm{r}|<1$. Let $\mathrm{r}=0.8,1.8,-0.8,-1.8$. What is the long term behavior of the models ?

For example, let $\mathrm{r}=-0.7$:

Note: Select 1:Line under Style (F6) in the Y=Editor to follow the sequence.

The explicit equation is $\mathrm{p}(\mathrm{n})=300(-0.7)^{\mathrm{n}}$. The limit of $\mathrm{p}(\mathrm{n})$ as n approaches infinity is zero $\left(\lim _{n \rightarrow \infty} 300(-0.7)^{\mathrm{n}}=0\right)$.

Answer for this example: When $\mathrm{r}=-0.7$, the sequence oscillates with the amplitude of the oscillations decreasing as the sequence approaches 0 .

Exercise 3:

Change the initial condition. Does the change in initial condition affect the long term behavior of the model?

