Linear Transformations Student Activity	Name Class
Open the TI-Nspire document Linear_Transformations.tns. In this activity, you will visualize linear transformations from \mathbf{R}^2 to \mathbf{R}^2 to characterize some special cases. You will also observe the effect of a linear transformation in two dimensions, use your own words to describe the relationship between the input and output vectors, and use specific numerical results to support your conclusions.	 ▲ 1.1 1.2 1.3 Linear_Trans_ons Con Page 1.2, grab and drag the vector v to observe the effect of various linear transformations. Several transformation matrices are defined on Page 1.3. Page 1.4 is designed for computations using Math Boxes.
A linear transformation from \mathbf{R}^2 to \mathbf{R}^2 can be represented by a matrix If T is a linear transformation that maps \mathbf{R}^2 to \mathbf{R}^2 and \mathbf{v} is a 2×1 colutransformation can be written as $T(\mathbf{v}) = \mathbf{m} \cdot \mathbf{v}$ for some 2×2 matrix \mathbf{m} The matrix \mathbf{m} is called the transformation matrix.	umn vector, then the linear n .
Move to page 1.2.	Press ctrl) and ctrl 4 to navigate through the lesson.
 The left work area is a Notes page with two interactive Math Boxes. In the first Math Box, define the matrix m to be a transformation the Math Box following the assignment characters, := . When you open the .tns file, m = a initially. 	n matrix. Note: to define \mathbf{m} , edit
 In the right work area, grab and drag the vector v (at the tip of the arrow The product, w = m · v, in the left work area, and the vector w automatically updated. 	w). v, in the right work area, are
On Page 1.3, there are several defined transformation matrices and condition There are also several Math Boxes on Page 1.4 to compute $\mathbf{m} \cdot \mathbf{v}$ for \mathbf{v} . Note: The calculator function norm of a vector returns the length of the the following transformations affects the magnitude and direction 1. Let $\mathbf{m} = \mathbf{a} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. a. Describe this transformation in words.	estants. arious input vectors v . e vector. Consider how each of n of the input vector.

Name	
Class	

b. Complete the following table.

	0					
v	$\begin{bmatrix} 1\\ 0\end{bmatrix}$	$\begin{bmatrix} 0\\2\end{bmatrix}$	$\begin{bmatrix} -4\\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ -5 \end{bmatrix}$	$\begin{bmatrix} 2\\2\end{bmatrix}$	$\begin{bmatrix} 3\\ -3 \end{bmatrix}$
m · v						

c. Do the calculations in the table above support your description from part a? Why or why not?

2. For
$$\theta = \frac{\pi}{4}$$
, let $\mathbf{m} = \mathbf{b} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.

- Note: To change the transformation matrix, click the Math Box in which \mathbf{m} is defined (on Page 1.2). Delete the current transformation matrix (for example, \mathbf{a}), and type the variable representing any one of the transformation matrices defined on Page 1.3 just after the assignment characters := (for example, \mathbf{b}).
 - a. Describe this transformation in words.

b. Complete the following table.

v	$\begin{bmatrix} 1\\ 0\end{bmatrix}$	$\begin{bmatrix} 2\\2\end{bmatrix}$	$\begin{bmatrix} -4\\ -4 \end{bmatrix}$	$\begin{bmatrix} 0\\ -1 \end{bmatrix}$	$\begin{bmatrix} 5\\5 \end{bmatrix}$	$\begin{bmatrix} \sqrt{2} \\ -\sqrt{2} \end{bmatrix}$
m · v						

- c. Do the calculations in the table above support your description from part a? Why or why not?
- d. Describe this transformation for any value of θ .

Name _____ Class _____

- 3. Let $\mathbf{m} = \mathbf{c} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
 - a. Describe this transformation in words.

b. Complete the following table.

v	$\begin{bmatrix} 1\\ 0\end{bmatrix}$	$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$	$\begin{bmatrix} -4 \\ -6 \end{bmatrix}$	$\begin{bmatrix} 0\\ -5 \end{bmatrix}$	$\begin{bmatrix} 3\\7\end{bmatrix}$	$\begin{bmatrix} -4\\ 6 \end{bmatrix}$
m · v						

- c. Do the calculations in the table above support your description from part a? Why or why not?
- 4. Let $\mathbf{m} = \mathbf{d} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.
 - a. Describe this transformation in words.

b. Complete the following table.

v	$\begin{bmatrix} 0\\1\end{bmatrix}$	$\begin{bmatrix} 3\\ 3 \end{bmatrix}$	$\begin{bmatrix} -6\\ -4 \end{bmatrix}$	$\begin{bmatrix} 0\\ -5 \end{bmatrix}$	$\begin{bmatrix} 2\\5 \end{bmatrix}$	$\begin{bmatrix} -3\\ -5 \end{bmatrix}$
m · v						

c. Do the calculations in the table above support your description from part a? Why or why not?

Name	
Class	

- 5. For k = 2, let $\mathbf{m} = \mathbf{e} = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$.
 - a. Describe this transformation in words.
 - b. Complete the following table.
- Note: $|\mathbf{v}|$ is the magnitude, or length, of the vector \mathbf{v} . The magnitude of the vector \mathbf{v} can be found on Page 1.4: norm $(\mathbf{v}) = |\mathbf{v}|$.

v	$\begin{bmatrix} 1\\1\end{bmatrix}$	$\begin{bmatrix} 0\\ 3 \end{bmatrix}$	$\begin{bmatrix} -3\\4 \end{bmatrix}$	$\begin{bmatrix} -5\\ -12 \end{bmatrix}$	$\begin{bmatrix} 0\\ -4 \end{bmatrix}$	$\begin{bmatrix} 1\\ \sqrt{3} \end{bmatrix}$
v						
m · v						
m · v						

- c. Do the calculations in the table above support your description from part a? Why or why not?
- d. Describe this transformation for any value of k > 0.

Name _____ Class _____

- 6. Let $\mathbf{m} = \mathbf{h} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.
 - a. Describe this transformation in words.

b. Complete the following table.

v	$\begin{bmatrix} 3\\ 4 \end{bmatrix}$	$\begin{bmatrix} -2\\7\end{bmatrix}$	$\begin{bmatrix} -3\\ -4 \end{bmatrix}$	$\begin{bmatrix} 0\\ -5 \end{bmatrix}$	$\begin{bmatrix} 2\\ -5 \end{bmatrix}$	$\begin{bmatrix} \sqrt{11} \\ 12 \end{bmatrix}$
m · v						

c. Do the calculations in part (b) support your answer in part (a)? Why or why not?