\qquad
\qquad

Part 1 - Comparing Ratios

In this problem set, you will compare ratios with different denominators. Use the <, >, and $=$ signs under the [TEXT] menu (2nd MATH). Identify which is the better deal.

1. Boxes of Cereal:

Box 1: $\$ 3.50$ for 24 ounces
Box 2: $\$ 2.40$ for 16 ounces

Answer: \qquad
2. Containers of Juice:

Jug 1: $\$ 2.99$ for 18 ounces
Jug 2: \$4.29 for 64 ounces
Answer: \qquad

Enter each ratio as a fraction and insert one of the comparisons between. In this example, press 3 5 5 b/t $2 \square$ then 2nd MATH and choose the $<$, $>$, or $=$, and then $2 \square 40$ 明 1 6. Press ENTER.
$\frac{3.50}{24}<\frac{2.40}{16} \quad 1$

Part 2 - Writing Equivalent Ratios

In Problems 4-6, you will rewrite equivalent ratios to have comparisons with the same denominators. Write the equivalent ratio for each and then compare. Identify which is the better deal.
4. Boxes of Cereal:

Box 1: $\$ 3.50$ for 24 ounces = \qquad
Box 2: \$2.40 for 16 ounces = \qquad

Answer: \qquad

Find an equivalent ratio using the LCM for each of the ratios. This shows confirmation that you have found an equivalent ratio.

5. Ears of corn:

Option 1: $\$ 1.50$ for 3 ears = \qquad
Option 2: $\$ 2.00$ for 8 ears = \qquad

Answer: \qquad
6. Chips:

Bag 1: $\$ 2.90$ for 18 ounces = \qquad
Bag 2: \$4.00 for 36 ounces = \qquad

Answer: \qquad
7. When would you likely use equivalent ratios to find common denominators?

Problem 3 - Writing Unit Rates

Find the unit rate for each item using division. Then identify which option is a better deal.
8. Cheese:

Bag 1: $\$ 2.89$ for 15 ounces = \qquad
Bag 2: \$3.29 for 19 ounces = \qquad

Answer: \qquad
10. Movie Passes:

Sale 1: $\$ 28$ for 3 tickets = \qquad
Sale 2: \$40 for 5 tickets = \qquad

Answer: \qquad
9. Canned Tomatoes:

Can 1: $\$ 0.89$ for 13 ounces = \qquad
Can 2: \$1.99 for 29 ounces = \qquad

Answer: \qquad
11. Socks:

Bag 1: \$8.99 5 pair = \qquad
Bag 2: \$17.29 9 pair = \qquad

Answer: \qquad
12. When would you prefer to use unit rates instead of finding like denominators to compare prices?
\qquad
\qquad

