\qquad
\qquad

Problem 1 - Stretching a Parabola

On page 1.4 is a graph of the function, $f(x)=x^{2}$. Click on the arrows to change the value of the coefficient of x^{2}.

1. What part of the equation changes as the graph is stretched?
2. When the coefficient of x^{2} becomes negative, what happens to the graph?
3. On page 1.7 , is the coefficient of x^{2} positive or negative?
4. What is a possible coefficient of x^{2} in the graph on page 1.8 ?

Problem 2 - Translating a Parabola

On page 2.2 is a graph of the function, $f(x)=x^{2}$. Click on the arrows to change the values for h and k.
5. How does the equation change?

The vertex form equation for a quadratic is $y=a(x-h)^{2}+k$.
6. What does (h, k) represent?
7. What is the vertex of the graph on page 2.5?

Stretching the Quads

8. What is the vertex of the function $f(x)=(x-3)^{2}+1$?
9. Which of the following functions has (have) a vertex at $(-1,1)$?

$$
\begin{aligned}
& a(x)=2(x-1)^{2}+1 \\
& b(x)=-1(x+1)^{2}-1 \\
& c(x)=-3(x+1)^{2}+1
\end{aligned}
$$

10. Write an equation with a vertex of $(-2,3)$. Check your work by graphing it on page 2.9.
11. Write a second equation with a vertex of $(-2,3)$, if possible. If it is not possible, explain why.

Problem 3 - Finding Zeros of a Quadratic Graphically

For the graphs on pages 3.2, 3.4, and 3.6, grab the point on the graph and move it to find the maximum/minimum and the zeros.
12. What is (are) the zero(s) of the function on page 3.2?
13. What is (are) the zero(s) of the function on page 3.4 ?
14. What is (are) the zero(s) of the function on page 3.6 ?

Stretching the Quads

Problem 4 - Connecting Zeros to Equation

Find the zeros for each given function. Select MENU > Points \& Lines > Intersection Points to find the intersection between the parabola and x-axis to determine the zeros. Select the graph and then the x-axis.
15. How does the factored equation at the bottom of the page help find the zeros?
16. For the factored form equation, $y=a(x-p)(x-q)$, what do p and q represent?
17. What are the zeros of the function on page 4.8 ?

