Calculus Exploration
Area of Rectangles and Definite Integrals

Name \qquad
Date \qquad

In this exploration, you will develop a relationship between the area of rectangles over $[a, b]$ and the definite integral over $[a, b]$ using your TINspire to help measure the area of the rectangles.

\# of rectangles	$\mathbf{1}$	2	3	$\mathbf{4}$	5	6	7	8	9	10	Sum of rectangles
$\mathrm{N}=1$											
$\mathrm{~N}=2$											
$\mathrm{~N}=5$											
$\mathrm{~N}=10$											

Actual Area Under Curve (Integral)

When you drew one rectangles, was that a good approximation for the area under the curve? Why or why not? \qquad
\qquad
\qquad
\qquad
As you increased the number of rectangles drawn between [a,b], what did you notice about the relationship between the rectangles and the area under the curve? \qquad
\qquad
\qquad
In the last step when you had the calculator calculate the integral from [a.b], which is the actual area under the curve, how was that value different than the area you got from the sum of the rectangles? \qquad
\qquad
\qquad
Describe in your own words what each part of Riemanns Sum stands for.

$$
\lim _{\max \Delta x \rightarrow \infty} \sum_{i=1}^{\infty} f\left(x_{i}\right) \Delta x=\int_{a}^{b} f(x) d x
$$

\qquad

