Algebra Test 1A

Name:

7 8 9 10 11 12

Question: 1

Which one of the following is **not** a factor of: $x^4 - 2x^3 - x^2 + 2x$?

- b) x+1
- c) x
- e) x+2

Question: 2

The equation to the graph shown is given by:

a)
$$f(x) = (x-a)(x-b)(x-c)$$

b)
$$f(x) = (x+a)(x+b)(x+c)$$

c)
$$f(x) = (x-a)(x-b)(x-c)$$

d)
$$f(x) = (x-a)(x-b)(x-c)$$

Question: 3

If x-a is a factor of: $x^3 + (4-a)x^2 - 4x + 1$ the value of a is:

- 2.78316

Question: 4

Given $g(x) = \ln\left(\frac{x}{2}\right) - 1$ and g(f(x)) = x then f(x) is equal to:

- a) \boldsymbol{x}
- 2eb)
- c) $\ln(2x)+1$ d) $2e^{x+1}$
- e) $2e^{x} + 1$

Question: 5

If a and b are non-zero real numbers, and the graph of $y = ax^2 + b$ is defined on its maximal domain, then the graph is

a one-to-one function

b) a many-to-one function

a one-to-many function

d) a many-to-one relation

e) not a relation

Question: 6

Given $f:(-2a,a] \to R$, f(x) = -a - x where a > 0, the range of the function f is

- (-2a,a] b) [-2a,a) c) (-2a,a) d) [a,2a) e) (a,2a]

Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Question: 7

If $f(x) = (x^2 + ax + 36)(x^2 + 8x + b)$ has no solutions for f(x) = 0 then:

a)
$$a = 6$$
 and $b = 64$

b)
$$-6 < a < 6$$
 and $-64 < b < 64$

c)
$$a < 12$$
 and $b < 16$

d)
$$-12 < a < 12$$
 and $-16 < b < 16$

e)
$$-12 < a < 12$$
 and $b > 16$

Question: 8

Given f(x) is quadratic and a is a real constant, if f(a) = 0, f(3a) = 0 and $f(0) = 3a^2$, which of the following is true?

- a) The line x = -2a is the axis of symmetry
- b) The point $(2a, a^2)$ is a minimum turning point
- c) The point $(2a, -a^2)$ is a minimum turning point
- d) The point $(2a, a^2)$ is a maximum turning point
- e) The point $(2a, -a^2)$ is a maximum turning point

Question: 9

For the function $f(x) = a + \frac{b}{(x+c)^2}$, on its maximal domain, which of the following is **false**?

- a) The graph has a vertical asymptote at x = -c.
- b) The graph has a horizontal asymptote at y = a.
- c) The maximal domain is $R \setminus \{-c\}$.
- d) The range is $R \setminus \{-b\}$.
- e) The graph is not continuous.

Question: 10

Given $f(x) = \sqrt{x+3}$ and $g(x) = \sqrt{1-x}$ defined on their maximal domain, then the graph of h(x) = f(x) - g(x) has maximal domain and range respectively given by:

a)
$$[-3,\infty)$$
, R

b)
$$[1,\infty), R^+$$

c)
$$[-\infty,3)\cup[1,\infty)$$
, R

d)
$$[-3,1], R^+$$

e)
$$[-3,1]$$
, $[-2,2]$

[©] Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.