Vectors Test 2A

Name: Answers

Student

Question: 1

A vector of magnitude 6 in the opposite direction to: $\underset{\sim}{a}=12 \underset{\sim}{i}-6 \underset{\sim}{j}+12 \underset{\sim}{k}$
a) $2(2 \underset{\sim}{i}-\underset{\sim}{j}+2 \underset{\sim}{k})$
b) $2(-2 \underset{\sim}{i}+\underset{\sim}{j}-2 \underset{\sim}{k})$
c) $6(-2 \underset{\sim}{i}+\underset{\sim}{j}-2 \underset{\sim}{k})$
d) $12(4 \underset{\sim}{i}-2 \underset{\sim}{j}+4 \underset{\sim}{k})$
e) $12(2 \underset{\sim}{i}-\underset{\sim}{j}+2 \underset{\sim}{k})$

Question: 2

In the cube below, P is the midpoint of HG . Vector AP can be written as:
a) $\underset{\sim}{h}-\frac{1}{2}(\underset{\sim}{a}-\underset{\sim}{b})$

$$
\begin{array}{ll}
a=O A & e=O E \\
b=O B & h=O H
\end{array}
$$

b) $\quad \frac{1}{2}(\underset{\sim}{a}+\underset{\sim}{e}+\underset{\sim}{h})$
c) $\underset{\sim}{h}+\frac{1}{2} \underset{\sim}{b}-\frac{3}{2} \underset{\sim}{a}$
d) $\underset{\sim}{h}+\frac{1}{2}(\underset{\sim}{a}+\underset{\sim}{b})$
e) $\frac{3}{2} \underset{\sim}{a}+\frac{1}{2} \underset{\sim}{b}+\underset{\sim}{e}+\underset{\sim}{h}$

Question: 3

Vector $\underset{\sim}{a}=3 \underset{\sim}{i}+m \underset{\sim}{j}+n \underset{\sim}{k}$ is perpendicular to vector $\underset{\sim}{b}=4 \underset{\sim}{i}+2 \underset{\sim}{j}+4 \underset{\sim}{k}$ and $c=5 \underset{\sim}{i}+\underset{\sim}{j}+\underset{\sim}{k}$ the values of m and n are:
a) $\quad \begin{aligned} & m=-24 \\ & n=9\end{aligned}$
b) $\quad \begin{aligned} & m=9 \\ & n=-24\end{aligned}$
c) $\quad \begin{aligned} & m=-22.5 \\ & n=8.5\end{aligned}$
d) $\begin{aligned} & m=8.5 \\ & n=-22.5\end{aligned}$
e) None of these

Question: 4

The scalar resolute of $\underset{\sim}{a}=3 \underset{\sim}{i}+3 \underset{\sim}{k}$ in the direction of $\underset{\sim}{b}=2 \underset{\sim}{i}+\underset{\sim}{j}+2 \underset{\sim}{k}$ is:
a) $2 \sqrt{2}$
b) $2 \sqrt{2}(2 \underset{\sim}{i}+\underset{\sim}{j}+2 \underset{\sim}{k})$
c) $2 \sqrt{2}(3 \underset{\sim}{i}+3 \underset{\sim}{k})$
d) 4
e) $4(2 \underset{\sim}{i}+\underset{\sim}{j}+\underset{\sim}{k})$

[^0]
Question: 5

The angle between vector $\underset{\sim}{a}=3 \underset{\sim}{i}+3 \underset{\sim}{k}$ and vector $\underset{\sim}{b}=2 \underset{\sim}{i}+2 \underset{\sim}{j}+n \underset{\sim}{k}$ is $\frac{\pi}{3}$, the value of n could be:
a) 2
b) $\frac{1}{6}$
c) $\frac{\sqrt{3}}{6}$
d) $\frac{\sqrt{2}}{2}$
e) 0

Question: 6

If $\underset{\sim}{a}=2 \underset{\sim}{i}+\underset{\sim}{j}+3 \underset{\sim}{k}, \underset{\sim}{b}=3 \underset{\sim}{i}+2 \underset{\sim}{j}+5 \underset{\sim}{k}$ and $\underset{\sim}{c}=\underset{\sim}{i}+4 \underset{\sim}{j}+n \underset{\sim}{k}$ are linearly dependent then:
a) $n=0$
b) $n=5$
c) $n \neq 5$
d) $n=-5$
e) $\quad \begin{aligned} & n=5 \text { or } \\ & n=-5\end{aligned}$

Question: 7

Which one of the following is NOT a unit vector?
a) $\frac{1}{3}(\underset{\sim}{i}+\underset{\sim}{j}+\underset{\sim}{k})$
b) $\frac{1}{3}(2 \underset{\sim}{i}+\underset{\sim}{j}+2 \underset{\sim}{k})$
c) $\frac{1}{13}(12 \underset{\sim}{i}+\underset{\sim}{j}+3 \underset{\sim}{k})$
d) $\frac{1}{6}(4 \underset{\sim}{i}+2 \underset{\sim}{j}+4 \underset{\sim}{k})$
e) $\frac{1}{5}(3 \underset{\sim}{i}+4 \underset{\sim}{k})$

Question: 8

If $|\underset{\sim}{a}|=2$ and $|\underset{\sim}{b}|=3$ and $\underset{\sim}{a} \cdot \underset{\sim}{b}=-3 \sqrt{2}$ then $|\underset{\sim}{a}-\underset{\sim}{b}|^{2}$ is equal to:
a) 1
b) 25
c) $13-6 \sqrt{2}$
d) $13+6 \sqrt{2}$
e) $25+6 \sqrt{2}$

Question: 9

If $\underset{\sim}{a}=\frac{1}{2}(\underset{\sim}{i}-\underset{\sim}{j}+\sqrt{2} \underset{\sim}{k})$ and $\underset{\sim}{b}=\frac{1}{2}(\underset{\sim}{i}-\underset{\sim}{j}-\sqrt{2} \underset{\sim}{k})$ then which of the following is NOT true?
a) $\underset{\sim}{a}$ is perpendicular to $\underset{\sim}{b}$
b) $\quad|\underset{\sim}{a}|=|\underset{\sim}{b}|=1$
c) Both $\underset{\sim}{a}$ and $\underset{\sim}{b}$ make angles of 60° with the x
d) Both $\underset{\sim}{a}$ and $\underset{\sim}{b}$ make angles of 120° with the y
axis.
Vector $\underset{\sim}{a}$ make angles of 135° with the z
e) axis, and vector $\underset{\sim}{b}$ make angles of 45° with the z axis,

Question: 10

A unit vector perpendicular to $\underset{\sim}{b}=-\underset{\sim}{i}+2 \underset{\sim}{j}+2 \underset{\sim}{k}$ passing through $\underset{\sim}{a}=2 \underset{\sim}{i}+8 \underset{\sim}{j}+2 \underset{\sim}{k}$ is given by:
a) $\frac{\sqrt{2}}{6}(-3 \underset{\sim}{i}-3 \underset{\sim}{i})$
b) $\frac{\sqrt{2}}{6}(-3 \underset{\sim}{i}+3 \underset{\sim}{k})$
c) $\frac{\sqrt{2}}{6}(\underset{\sim}{i}-3 \underset{\sim}{k})$
d) $\frac{1}{6}(4 \underset{\sim}{i}+4 \underset{\sim}{j}-2 \underset{\sim}{k})$
e) $\frac{1}{6}(-4 \underset{\sim}{i}-4 \underset{\sim}{j}+2 \underset{\sim}{k})$
(C) Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

[^0]: (C) Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

