## Trigonometric Transformation Exercises TImath.com: Precalculus

## Math Objectives

- Determine the amplitude and period of the sine, cosine, and tangent functions.
- Use graphs to explore transformations of trigonometric functions, such as amplitude changes, period changes, vertical shift, and horizontal shift.
- Determine equations to represent trigonometric transformations.


## Vocabulary

- transformation
- amplitude
- period
- vertical shift
- horizontal shift


## About the Lesson

- This lesson is a follow-up lesson to the activity Trigonometric Transformations.
- This activity uses graphs to explore transformations of the trigonometric functions sine, cosine, and tangent. The transformations include amplitude changes, period changes, vertical shift, and horizontal shift.

This activity explores four transformations of the trigonometric functions sine, cosine and tangent. These transformations will include, amplitude change, period change, horizontal shift and vertical shift. On the next page is the graph of $\sin (x)$.

TI-Nspire ${ }^{\text {TM }}$ Technology Skills:

- Download TI-Nspire document
- Open a document
- Move between pages
- Graph a trigonometric function


## Tech Tips:

- Make sure the font size on your

TI-Nspire handhelds is set to Medium.

## Lesson Materials:

Student Activity
Trigonometric_Transformation Exercises_Student.PDF
Trigonometric_Transformation_ Exercises_Student.DOC

TI-Nspire document
Trigonometric_Transformation_
Exercises.tns

## Discussion Points and Possible Answers:

TI-Nspire Problem/Pages 1.3, 1.8, 1.11, and 1.14

Tech Tip: Press ©ctrl (G) to access the function entry line.


1. Looking at the graph of $\sin (x)$, what are the amplitude and period? Explain how you can tell by looking at the graph.

The amplitude is half the difference between the upper and lower bounds of the function. In this case, the amplitude is 1 , as found below:
$=\frac{1}{2}(1-(-1))=\frac{1}{2}(1+1)=\frac{1}{2}(2)=1$
The period is the distance it takes on the $x$-axis for the function to complete one cycle. In this case, the period is $2 \pi$.

The amplitude is half the difference between the upper and lower bounds of the function. In this case, the amplitude is 1 , as found below:
$=\frac{1}{2}(1-(-1))=\frac{1}{2}(1+1)=\frac{1}{2}(2)=1$
The period is the distance it takes on the $x$-axis for the function to complete one cycle. In this case, the period is $2 \pi$.

The tangent function is not bounded above or below, so it does not have an amplitude.

The period is the distance it takes on the $x$-axis for the function to complete one cycle. In this case, the period is $\pi$.
4. How has the $\sin (x)$ graph changed? Write an equation in the form of $f(x)=\sin (B x)$ to represent the transformed graph. To check your equation, graph it on the same page.

The period has changed in such a way that the transformed graph has been horizontally compressed. The period of the transformed graph is $\pi$. Therefore, the equation to represent the transformed graph is $f(x)=\sin (2 x)$.
5. How has the $\cos (x)$ graph changed? Write an equation in the form of $f(x)=A^{*} \cos (x)$ to represent the transformed graph. To check your equation, graph it on the same page.
6. Write an equation in the form of $f(x)=A^{*} \cos (B x)$ to represent the graph. To check your equation, graph it on the same page.
7. Now, how can you represent the graph on page 1.14 using the sine function? Write an equation in the form of $f(x)=A^{*} \sin (B x+C)$ to represent the graph. To check your equation, graph it on the same page.

The amplitude has changed in such a way that the transformed graph is vertically stretched. Instead of the upper and lower bounds being 1 and -1 , they are now 2 and $\mathbf{- 2}$. Therefore the transformed graph can be represented by the equation $f(x)=2 \cos (x)$.

This graph represents a period and amplitude change of the cosine graph. The graph can be represented by the equation $f(x)=0.5 \cos (3 x)$.

Since the sine and cosine graphs have the same period and amplitude, it is possible to represent this graph using the sine function with a horizontal shift. The graph can be represented by the equation $f(x)=0.5 \sin \left(3 x+\frac{\pi}{2}\right)$.

Teacher Tip: There is more than one equation that would work to represent the graph on page 1.14 using the sine function. The one shown above is the most obvious.

## Wrap Up:

Upon completion of the discussion, the teacher should ensure that students are able to:

- Understand and find the amplitude and period of the sine, cosine, and tangent functions.
- Use graphs to determine transformations such as amplitude change, period change, vertical shift, and horizontal shift.
- Determine equations to represent trigonometric transformations.

