Activity

In this activity, you will start by fitting a linear least-squares regression line in Topic 11 to the U.S. Census data given on the next page. This will set the stage for the activities that follow.

The shape of the resulting curve looks like part of a parabola (a quadratic equation), which is one of the polynomial regression fits discussed in Topic 12 (cubic and quadrinomial fits being the others).
Population models suggest exponential or logistic growth as possible fits. Exponential growth will be discussed in Topic 13 as a fit that uses a transformation of data to make it more linear (logarithmic and power fits are the others). The logistic fit (which is our selection for the best fit) is covered in Topic 14.

Topic 15 returns to fitting a straight line to data, but by a technique that is more resistant to unusual values (medianmedian fit) than the least-squares fit of Topic 11.

Topic 16 fits a trigonometric sine curve to periodic data.
Note that if your fit display screens are different from those shown in this activity (do not show $\mathbf{r}, \mathbf{r}^{2}$ or \mathbf{R}^{2} when this handbook does) your diagnostic flag is off. Topic 8 shows how to turn it on.

Read Topic 11 before reading other topics in Activity 3.

Setting Up

The main data set for this activity is the U.S. Census data (in millions of people) given on the next page. Store it in list USPOP with a coded year value of 1 to 18 for the years 1810 to 1980 in list \mathbf{L}_{1}. The value for 1990 is 249.63 million people, but you do not include this in the list because you will use it to check how well the fit equation can predict it.

Activity 3, Fitting an Equation to Bivariate Data (cont.)

	YEAR:	1810	1820	1830	1840	1850	1860	1870	1880	1890
L1	X:	1	2	3	4	5	6	7	8	9
USPOP	Y:	7.24	9.64	12.87	17.07	23.19	31.44	39.82	50.16	62.95
YEAR:	1900	1910	1920	1930	1940	1950	1960	1970	1980	
	$\mathbf{X}:$	10	11	12	13	14	15	16	17	18
	$\mathbf{Y}:$	75.99	91.97	105.71	122.78	131.67	151.33	179.32	203.21	226.5

1. Set up Plot1 for a Scatter plot, as shown in Topic 7 and in screen 1.
2. Press ZOOM 9: ZoomStat TRACE to produce the plot of your data, as shown in screen 2.

The top of the plot screen shows the setup with P1:L1,USPOP. The points seem to lie more on a curve than a straight line, but you will start with fitting the linear least-squares regression line (Topic 11) to the data to set the stage and understand the notation for the activities that follow.

Topic 11—Linear Least Squares Regression Line

The following procedure obtains a linear least squares regression line.

1. Calculate the fit equation.
a. Press STAT <CALC> 4:LinReg $(a x+b)$ L1 \qquad LUSPOP $\square \mathbf{Y}$ 1, as shown in screen 3, with \mathbf{Y}_{1} pasted from VARS < Y -VARS> $1:$ Function $1: Y 1$.
b. Press ENTER for screen 4 showing your linear fit $Y 1=12.751 x-35.416$ stored in $Y 1$ in the $Y=$ editor.
2. Plot data scatter and fit equation.
a. Keeping Y1 turned on (this was done automatically in step 1), turn on Plot1 as a Scatter plot (as shown in Topic 7) with all other $Y=$ functions and stat plots turned off.
b. Press ZOOM 9:ZoomStat TRACE for both a Scatter plot of the data and a plot of the regression line, as shown in screen 5.

Note: You would get the same results with STAT <CALC> 8:LinReg $(a+b x) L_{1}$ \square LUSPOP Y1 but the slope would be \boldsymbol{b} instead of \boldsymbol{a}.
(5)

3. Plot residuals.

Step 1 automatically stores the residuals in list RESID.
a. Set up Plot2 as a Scatter plot with Xlist:L1 and Ylist:RESID (making sure all other stat plots and $Y=$ plots are off).
b. Press ZOOM 9:ZoomStat TRACE for screen 6.

The non-random pattern of the Scatter plot of residuals confirms that the linear least squares regression line does not fit the data very well. Note that the pattern looks quadratic.

The residual is the difference from the actual y-value and the value obtained by plugging the x-value that goes with the y-value into the regression equation. When $x=1$, you have $\mathbf{Y}_{1}=12.751 x-35.416$, which becomes $\mathrm{Y}_{1}(1)=12.751(1)-35.416=-\mathbf{2 2 . 6 6 5}$. The difference from the actual value of 7.24 is 7.24 minus $\mathbf{- 2 2 . 6 6 5}$, or 29.905.

When you paste list RESID to the home screen (as shown in the last two lines of screen 7), you confirm this calculation.
4. Measure the fit (SSE).

With some residuals positive, some negative, and some possibly zero, you will use the Sum of the Squared Residual Errors (SSE) as your measure of how close the points fit the curve. (If all the points are on the curve, this would be zero.) SSE is calculated in screen 8 , where $\mathrm{SSE}=4651.51534$, with sum pasted from 2nd [LIST] <MATH> 5:sum.
5. Predict the population in $1990(X=19)$.
a. Paste $\mathbf{Y} 1$ to the home screen, and then type19 \square, as shown on the first line in screen 9 .
b. Press ENTER for the next line, which is the predicted value of Y, or 206.845 .

Because you know the actual census value was 249.63, you can calculate the difference. The difference is 42.78516, or 17 percent, a fairly large error. (See the calculations in screen 9. Note Ans is from 2nd [ANS] in the last row of the keyboard.)

Note: For a perfect fit, the residuals will be all zero and ZOOM 9:ZoomStat will result in a WINDOW RANGE error since $Y \min =0 \quad Y \max =0$. If you still wish to see the plot, change Ymin =-1 and Ymax $=1$ and then press TRACE.

Activity 3, Fitting an Equation to Bivariate Data (cont.)

6. Calculate \mathbf{r} and \mathbf{r}^{2} as measure of linearity.
\mathbf{r}^{2} is related to SSE in the current case. To show this, you need to calculate the Sum of Squares Total (SST); that is, the sum to squared differences for each y data value and the mean of the complete \mathbf{Y} list. (SST depends only on the data list and is independent of the fit equation used.)

SST $=\operatorname{sum}(\square$ LUSPOP \square mean \square LUSPOP $\square \square$
$x^{2} \square=83420.06$ with the mean pasted from 2nd [LIST] <MATH> 3:mean. $\mathbf{r}^{2}=1-\mathrm{SSE} / \mathrm{SST}=\mathbf{0 . 9 4 4 2}$ as before and in screen 10 .

Topic 12—Polynomial Regression: Quadratic, Cubic, and Quadrinomial

Press STAT <CALC> to reveal screen 11. This topic covers the last three functions shown.

5:QuadReg fits $Y=a x^{2}+b x+c$
6:CubicReg fits $Y=a x^{3}+b x^{2}+c x+d$
7:QuartReg fits $Y=a x^{4}+b x^{3}+c x^{2}+d x+e$

Quadratic Fit

In this procedure, you will fit the quadratic equation to the population census data. The procedure for the other fits is the same.

Note that the numbers of the steps below refer to the steps in Topic 11 that present more detail.

Step in Topic 11	Display
1. Calculate the fit equation.	Press STAT <CALC> 5:QuadReg L1 \square LUSPOP \square Y1 (with Y1 pasted from VARS <Y-VARS> 1:Function 1:Y1) for screen 12. Press ENTER for screen 13. Note that $\mathbf{R}^{2}=$ 0.9984 compared to $\mathbf{r}^{2}=\mathbf{0 . 9 4 4 2}$ for the linear regression in Topic 11.
2. Plot data scatter and fit equation	The regression plot through the data appears to fit very well. (See screen 14.)

Note: Small residuals (SEE) give an r^{2} close to one. Large residuals (SEE) give an r^{2} close to zero.
(11)

(cont.) Step in Topic 11	Display
3. Plot residuals.	The residual plot appears more random than that in Topic 11. (See screen 15.)
4. Measure the fit (SSE).	As shown in screen 16, $\mathrm{SSE}=131.387$ for the quadratic fit compared to 4651.515 in Topic 11.
5. Predict population in $1990(X=19)$	The prediction for 1990 ($X=19$) is off by less than 1 percent (0.36 percent). (See screen 17.)
6. Calculate \boldsymbol{r} and \boldsymbol{r}^{2} as measure of linearity.	Note that SSE is directly related to \mathbf{R}^{2} for this multiple linear least squares fit as it was to r^{2} before for the "simple" linear least squares fit. $\left(Y=a x^{2}+b x+c=a X_{2}+\right.$ $b X_{1}+c$ is linear in the coefficient a, b, and c with $X_{2}=\left(X_{1}\right)^{2}$.) (See screen 18.)

Topic 13- Fits Linear by Transformations: Logarithmic, Exponential, and Power Regression

Press STAT <CALC> and then a few times to reveal screen 19. This section discusses the last three functions shown.

9: LnReg Fits $y=a+b(\ln x)=a+b X$ (linear in a and b). Calculates a and b using linear least squares on lists of $\ln x$ and y instead of x and y.
0: ExpReg Fits $y=a * b^{\mathrm{x}}=a * b^{\mathrm{x}}$.
Transforms to $(\ln y)=(\ln a)+(\ln b) x=A+B x$ (not linear in a and b).
Calculates A and B using linear least squares on list of x and $\ln y$ instead of x and y, then $\mathrm{a}=e^{A}$ and $b=e^{B}$.

A: PwrReg Fits $y=a * x^{\mathrm{b}}=\mathrm{a} * x^{\mathrm{b}}$
Transforms to $(\ln y)=(\ln a)+b(\ln x)=A+b X$ (not linear in a and b).
Calculates A and b using linear least squares on list of $\ln x$ and $\ln y$ instead of x and y, then $a=e^{A}$.

Activity 3, Fitting an Equation to Bivariate Data (cont.)

Exponential Fit

You will fit the exponential equation to the population census data; however, the procedure for the other fits is the same.

Note that the numbers of the steps below refer to the steps in Topic 11 that present more detail.

Step in Topic $11 \quad$ Display

1. Calculate the fit equation.

Press STAT <CALC>0:ExpReg $\mathrm{L}_{1} \square$ LUSPOP $\square \mathbf{Y}_{1}$ ENTER for screens 20 and 21

It is best to turn off the diagnostic flag (see Topic 8) here because \mathbf{r} and \mathbf{r}^{2} pertain to the transformed equation above and not to the fit equation in screen 21.
4. Measure the fit (SSE). As shown in screen 22,
6. Calculate \boldsymbol{r} and \boldsymbol{r}^{2} as $\quad \mathrm{SSE}=9848.987$, but there is no measure of linearity. relationship between this and \mathbf{r}^{2} (. $8819 \neq .9695$)
2. Plot data scatter and fit equation.
3. Plot residuals.
5. Predict population in $1990(X=19)$.

As you can see in screens 22 and 24 , the exponential curve does not fit well. The residual plot shows the unfortunate pattern of larger errors as time progresses.
Screen 25 shows an error of -48.3 percent for 1990.

Topic 14—Logistic Fit

Note that the numbers of the steps below refer to the steps in Topic 11 that present more detail.

Activity 3, Fitting an Equation to Bivariate Data (cont.)

Topic 15-Median-Median Linear Fit

Xlist in L1: (horsepower)	75	80	85	100	125	135	160	175
Ylist in L2: (milles per gal.)	27	25	15	22	19	16	10	12

The data set above was selected to show the advantage of the median-median fit. Because the medians of batches of data are used, the fit is resistant to unusual data points.
Note that the numbers of the steps below refer to the steps in Topic 11 that present more detail.

Comparison with Least-Squares Fit Line

Note that the numbers of the steps below refer to the steps in Topic 11 that present more detail.

Step in Topic 11	Display
1. Calculate the fit equation.	Press STAT <CALC> 4:LinReg(ax + b) L1 $\square \mathbf{L}_{2} \square \mathbf{Y}_{\mathbf{2}}$ for screen 37 (be sure that you use \mathbf{Y}_{2} and not \mathbf{Y}_{1} as before). Press ENTER for screen 38. Note that $\mathbf{r}=-.823$.
4. Measure the fit (SSE).	As shown in screen 39, $\mathrm{SSE}=83.77$ is less than the 101.25 of Med-Med as theory guarantees. But having the smallest SSE does not always guarantee the better fit, as you can observe in the plots that follow in screen 40.
2. Plot data scatter and fit equation	With Plot1, Y1, and Y2 on, press ZOOM 9:ZoomStat for screen 40, which shows both the Med-Med and LinReg fit lines. Note that the least-squares line is pulled toward point $\mathbf{x}=85, \mathbf{y}=15$.

If the point $x=85, y=15$ is deleted from L_{1} and L_{2} and a LinReg line plotted to the data, we obtain the results shown in screens 41 and 42 . The slope and the intercept are about the same as the Med-Med fit without deleting the data point (see screen 34); $r=-.976$ compared to -.8229 in screen 38 , and $\mathrm{SSE}=\mathbf{1 1 . 7 4}$, reduced from 83.77 in screen 39. The Med-Med fit is a good check on how influential such points are.

Activity 3, Fitting an Equation to Bivariate Data (cont.)

Topic 16-Trigonometric Sine Fit

Those who deal with periodic data, in Physics experiments, for example, will want to read about the SinReg (sinusoidal regression) function in the Statistics chapter of the TI-83 Guidebook for more information on this topic. The following data is from the example in the Guidebook with x representing the day of the year (equal intervals of every 30th day) and y the number of daylight hours in Alaska.

\boldsymbol{x} (day) L1:	1	31	61	91	121	151	181	211	241	271	301	331	361
\boldsymbol{y} (hrs) L2:	5.5	8	11	13.5	16.5	19	19.5	17	14.5	12.5	8.5	6.5	5.5

Note that the numbers of the steps below refer to the steps in Topic 11 that present more detail.

