Problem 1 – Assumptions

Goal: Estimate a population mean.

- When σ is known, the normal distribution and z-scores are used.
- When σ is not known, two assumptions are made:
 - 1. It is a simple random sample.
 - 2. The sample is from a normally distributed population, or n (the sample size) > 30.

If these assumptions are true, use a t distribution. For a sample size n of a t distribution, the degrees of freedom is n-1.

On page 1.3, graph the normal distribution and a t distribution with n = 3. Adjust the window appropriately. Then increase the value of n for the t distribution.

- **1.** What happens as $n \rightarrow 30$?
- 2. How does the size of the sample play a role in the accuracy of the estimation?
- **3.** Determine whether to use a normal distribution, *t* distribution, or neither.
 - **a.** n = 50, $\overline{x} = 10$, s = 4, population is skewed.
 - **b.** n = 15, $\overline{x} = 10$, s = 4, population is normally distributed.
 - **c.** n = 50, $\overline{x} = 10$, $\sigma = 4$, population is very skewed.
 - **d.** n = 15, $\overline{x} = 10$, s = 4, population is skewed.

Problem 2 – Estimating the interval

The true mean for the population will always be contained in an interval $\bar{x} \pm E$ (an error). The error is dependent upon the confidence interval chosen. The larger the probability, the larger the interval. $E = t_{\alpha/2} \frac{s}{\sqrt{n}}$ where $1 - \alpha$ is the probability that μ (the mean) is in interval.

So, if we desire a 95% confidence interval, then α = 0.05.

- **4.** Find a 95% confidence interval for a sample where n = 25, $\bar{x} = 15$, and s = 0.5.
 - Step 1: Find $t_{\alpha/2}$. On page 2.3, choose **MENU > Statistics > Distributions**, **Inverse t**. Fill in the boxes with the appropriate responses (Area = 0.025, since α = 0.05, and df = 24). Take the absolute value of this number.
 - Step 2: Calculate the value of E and store as **e**.
 - Step 3: Find the interval: $\bar{x} E < \mu < \bar{x} + E$

Extension - Using data

The data on page 3.2 gives the normal average January minimum temperature in degrees Fahrenheit of 56 cities. Find an interval that contains the population mean with:

- 1.90% confidence
- 2. 95% confidence
- 3.99% confidence