\qquad
\qquad

Problem 1 - Assumptions

Goal: Estimate a population mean.

- When σ is known, the normal distribution and z-scores are used.
- When σ is not known, two assumptions are made:

1. It is a simple random sample.
2. The sample is from a normally distributed population, or n (the sample size) >30.

If these assumptions are true, use a t distribution. For a sample size n of a t distribution, the degrees of freedom is $n-1$.

On page 1.3, graph the normal distribution and a t distribution with $n=3$. Adjust the window appropriately. Then increase the value of n for the t distribution.

1. What happens as $n \rightarrow 30$?
2. How does the size of the sample play a role in the accuracy of the estimation?
3. Determine whether to use a normal distribution, t distribution, or neither.
a. $n=50, \bar{x}=10, s=4$, population is skewed.
b. $n=15, \bar{x}=10, s=4$, population is normally distributed.
c. $n=50, \bar{x}=10, \sigma=4$, population is very skewed.
d. $n=15, \bar{x}=10, s=4$, population is skewed.

Problem 2 - Estimating the interval

The true mean for the population will always be contained in an interval $\bar{x} \pm E$ (an error). The error is dependent upon the confidence interval chosen. The larger the probability, the larger the interval. $E=t_{\alpha / 2} \frac{s}{\sqrt{n}}$ where $1-\alpha$ is the probability that μ (the mean) is in interval.

So, if we desire a 95% confidence interval, then $\alpha=0.05$.
4. Find a 95% confidence interval for a sample where $n=25, \bar{x}=15$, and $s=0.5$.

Step 1: Find $t_{\alpha / 2}$. On page 2.3, choose MENU > Statistics > Distributions, Inverse \mathbf{t}. Fill in the boxes with the appropriate responses (Area $=0.025$, since $\alpha=0.05$, and $\mathrm{df}=24$). Take the absolute value of this number.

Step 2: Calculate the value of E and store as \mathbf{e}.
Step 3: Find the interval: $\bar{x}-\mathrm{E}<\mu<\bar{x}+\mathrm{E}$

Extension - Using data

The data on page 3.2 gives the normal average January minimum temperature in degrees Fahrenheit of 56 cities. Find an interval that contains the population mean with:

1. 90% confidence
2. 95% confidence
3. 99\% confidence
