TI-Nspire Activity: Function Properties Activity By: Edward C. Nolan

Activity Overview

In this activity, students explore the meaning of relations and functions. In addition, they investigate different representations for relations and functions. They examine how to determine whether a relation is a function and investigate many different properties of functions.

Concepts

- Relations and mappings
- Representations of relations and mappings
- Functions
- Domain and range
- Continuity and discrete
- Maximum and minimum
- Intercepts
- Increasing and decreasing

Teacher Preparation

- This activity is designed for students to explore the definition and properties of functions. It can be used to introduce students to the topics or as a review prior to summative assessment.

The Classroom.

- This activity is designed to be done alternating between small group and whole class discussion. Students work on their own and supported by the teacher as they work. There may be occasions where the teacher regains the attention of the class to share/gain observations from the class.

The Lesson

Stage 1: Learning about Relations and Functions

Students start the activity by investigating relations and mappings. The student is given the definition of a relation and asked to change the representation of a relation from ordered pairs to a table.

Next, students are asked to change the representation of the relation to a mapping and to a graph.

Emphasis should be made by the teacher that when elements are repeated in the domain or the range, they are not repeated in the mapping.

Also, be sure that students are plotting the ordered pairs correctly on the graph, with the first coordinate plotted on the x-axis, the second on the y-axis.

Students then apply the concept of relation to a real world situation.

Students then look for a pattern in the real world situation, which they can answer either on the calculator or on the worksheet, depending upon how the teacher wishes to collect student understanding.

Connections can be made to the representation of the constant rate of change and how that appears on the graph (connecting to linear functions).

2.7	2.8	2.9	3.1	RAD AUTO REAL

What do you notice about the relation?

The calories increase at a constant rate of
change (the same difference each time).

Suggested Response
There is a constant increase for each x-value increase

The students next connect to the definition of functions as a subset of relations.

Students may need support in clicking, grabbing, and dragging the vertical line across the graph to test whether the relation is a function.

There is a distinction made between the definition of function and the characteristic of functions using the vertical line test.

Students then apply the definition of function to the earlier real world situation.

Stage 2: Properties of Functions

The students begin their study of properties with domain and range. Remember to focus on having the students use correct set notation (using brackets around the sets), placing the elements in numerical order, and not repeating elements.

Next, students learn about continuity and maximum and minimum. Students are asked to identify maxima and minima on relations in both ordered pair and graph form.

The students then are presented the definitions for intercepts and interpret them from a graph. The teacher can help reinforce with students that $x=0$ is the location of the y-intercept and that $y=0$ is the x-intercept.

4.1	4.2	4.3	4.4	RAD AUTO REAL

Let's examine the domain and range of our first relation:
$\{(4,3),(2,4),(1,-5),(5,0)\}$

The domain is $\{1,2,4,5\}$ and the range is $\{-5,0,3,4\}$. Note how we can list the elements in numerical order.

6.3	6.4	7.1	7.2	RAD A)JTO REAL

The x-intercept of a relation occurs when the graph intersects the x-axis (meaning that the y-coordinate is zero).

The y-intercept occurs when the graph intersects the y-axis (meaning the x-coordinate is 0).

Students conclude their study of the properties of functions with determining the intervals over which the function is increasing or decreasing.

The teacher will need to work with the class to have the students understand interval notation. Having the students shade back to

The graph increases $-4 \leq x \leq-1$ and
decreases $-1 \leq x \leq 2$. the x-axis can be an effective re-teaching strategy for determining increasing and decreasing.

Analysis/Extension

The teacher can choose to have additional examples of graphs for students to identify function properties. Examples like the second page of the exit card could be created by the teacher to allow for differentiation in the classroom.

Assessment

Give each student the Exit Card to complete.

Exit Card Answer Key

Express as a table, a graph, and a mapping.
$\{(5,3),(-4,2),(0,4),(2,3)\}$

x	y
5	3
-4	2
0	4
2	3

What is the domain and range of this relation?
Domain: $\{-4,0,2,5\}$

Range: $\{2,3,4\}$

Determine whether each graph represents a function. Explain how you know.

YES NO
It is a function because for each
x-value there is one and only one y-value.

It is not a function because for some values of x (like 2), there are two values of y (fails vertical line test).

Domain: $-8 \leq x \leq 9$
Range: $-6 \leq y \leq 8$
Continuous? Yes No
Maximum: 8 \qquad
Minimum: -6

Increasing: $-8<x<-4$ and $2<x<9$
Decreasing: $-4<x<2$

Domain: $-6 \leq x \leq 9$

Range: $-5 \leq y \leq 9$
Continuous? Yes No
Maximum: 9
Minimum: -5
Increasing: $0<x<9$
Decreasing: $-8<x<0$

Grade level: 6-10
Subject: Pre-Algebra/Algebra I
Time required: 60 minutes

Pages of the Activity

Time required: 60 minutes

Think back to the original relation:
$\{(4,3),(2,4),(1,-5),(5,0)\}$
What is the maximum and minimum of the
relation?
The maximum is 4 and the minimum is -5 .
Suggested Response:
The maximum value is 4 and the minimum value is -5 (remember, just examine the y-values).$.$

| 6.2 | 6.3 | 6.4 | 7.1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

| 6.3 | 6.4 | 7.1 | 7.2 | RAD A) ITO REAL |
| :--- | :--- | :--- | :--- | :--- | :--- |

The x-intercept of a relation occurs when the graph intersects the x-axis (meaning that the y-coordinate is zero).

The y-intercept occurs when the graph intersects the y-axis (meaning the x-coordinate is 0).

