Critical Points and Local Extrema Student Activity

Open the TI-Nspire document Critical_Points.tns.

A function **f** has a critical point at c if

- the value c is in the domain of the function f (in other words, f(c) is defined) and
- either f'(c) = 0 or f'(c) is undefined.

A function has a local maximum at c if $\mathbf{f}(c) \ge \mathbf{f}(x)$ when x is near c (that is, if $\mathbf{f}(c) \ge \mathbf{f}(x)$ for all x in some open interval containing c). Similarly, \mathbf{f} has a local minimum at c if $\mathbf{f}(c) \le \mathbf{f}(x)$ when x is near c (if $\mathbf{f}(c) \le \mathbf{f}(x)$ for all x in some open interval containing c).

In this activity, you will see several different examples of critical points and local extrema (maxima or minima).

Move to page 1.2.

- The graph of the differentiable function shown in the left window has a box centered around the point (1, 2). Drag the point on the line segment at the top to see a "zoomed in" view of this boxed area of the graph in the right window.
 - a. This function has a local minimum at x = 1. Using the graph and the definition of local minimum above, explain why.
 - b. What appears to happen to the graph as you zoom in on the point (1, 2)?
 - c. What is f'(1)? Explain your answer. Why is c = 1 a critical point of f?

Move to page 2.1.

- 2. This is the graph of a function having a local maximum at x = -2.
 - a. What appears to happen to the graph as you zoom in on the point (-2, 1)?
 - b. What is the value of f'(-2)? Explain your answer. Why is c = -2 a critical point of f?

 1.1 🐴.2 	2.1 Criti	cal_P…ev1	RAD	
CALCULU	S			
Critical Po	ints and L	ocal Extr.	ema	
Use up/dov slider point function at	vn arrows to zoom ir a critical po	or grab an 1 on the gr oint.	id drag the aphs of a	

c. What value could the derivative of a function have at the location of a local maximum or minimum? Explain your answer.

Move to page 3.1.

- 3. This is the graph of a function having a local minimum at x = -1.
 - a. What happens to the graph as you zoom in on the point (-1, -2)?
 - b. Assuming this behavior persists no matter how far you zoom in, is this function differentiable at x = -1? Why or why not?

Move to page 4.1.

- 4. The graph of this increasing function has a horizontal tangent at the point x = 2.
 - a. Is x = 2 a critical point? Why or why not?
 - b. Does **f** have either a local minimum or local maximum at x = 2?

Move to page 5.1.

- 5. The graph of this increasing function has a vertical tangent at the point x = -2.
 - a. Is x = -2 a critical point? Why or why not?
 - b. Does **f** have either a local minimum or local maximum at x = -2?
 - c. Does this contradict the statement you made in question 3d? Explain why or why not.