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CHAPTER 7

Matrices and

Vectors

In this chapter we will consider a variety of problems from
the areas of matrix theory and linear algebra. One of the
first things to be encountered will be the MATRX editor
features of the TI-86, which are significantly different from
those of the TI-85. This chapter relies heavily on matrix and
vector information, which can be found in the T/-86
Guidebook. In fact, the reader of Chapter 7 may need to
consult the Guidebook more frequently than in previous

chapters.
Preliminaries

Since we will be creating several matrices in this chapter, it may be worthwhile to delete all existing
matrices from your calculator in order to name the matrices created in this chapter the same as we
have named them. Recall that to delete existing matrices, you press [MEM] and select (DELET).
Then press [MORE], select (MATRX), and then press as many times as is necessary to delete the

existing matrices from your calculator.
§1 - Introduction to the Matrix Editor

1. Press [MATRX] and select (EDIT) to access the
MATRX editor. Enter A as the matrix name, and
press [ENTER]. We will create a 3 x 3 matrix, so press
[ENTER], then press again. The TI-86 now
prompts us for the entries of the matrix as in (7.1.1).
Note that the matrix is displayed in the form of an
array and that initially all entries of the matrix A are
Zero.

2. Press[3] to make the 1,1 entry equal to 3. Press
[ENTER]. In similar manner, make the other entries in
row one —1 and 1. Make row two 1, 0, 1 and row
three —1, 2, 4. Press to return to the home
screen. Type A and press to see (7.1.2).

3. Note that the beginning and end of the matrix are
indicated by double square brackets, whereas
individual rows are indicated by single square
brackets. Each row of a matrix is really in the form
of a vector. We can access a particular entry of A by
typing A(row #, column #) and pressing asin
(1.3

MATEX:A JK3

[ (. i 1
Lo 0 0 1
Lo 0 i |
1, 1=H

INSr 0 DELr § IMZc N DEL< RRREAL

=
PIGEY
N

AC3. 20
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Matrices and Vectors (Continued)

4. We can change this entry from the home screen
using the key asin (7.1.4).

(7.1.4)

5. Type A and press to see the change in the 3, 2
entry of A as in (7.1.5).

(7.1.5)

§2 — Creating a Matrix from the Home Screen

Matrices can also be created from the home screen as in
(7.2.1). We create a 2 x 2 matrix by entering the matrix
as indicated in (7.2.1). Note again that the beginning and
end of the matrix are indicated by double square
brackets, whereas individual rows are indicated by
single square brackets. Note when entering a matrix (or
a vector) from the home screen, it is necessary to put
commas between entries but not between rows of a
matrix. In (7.2.1) we also store the matrix in the variable
B by pressing [ST0#], then typing in B, and pressing
[ENTER].

(7.2.1)

§3 — Matrix-Vector Multiplication

AC3. 20 5
3I2AC3. 22
3
A
(3 -1 11
[1 8 1]
[-1 3 411
[[351114.5]1]
[[3 1]
[4 511
Ans+B
[[3 1]
[4 511

We have noted that the TI-86 uses double square brackets to indicate a matrix. Single square brackets

indicate a vector.

1. Figure (7.3.1) shows that the TI-86 can form the
product of a matrix and a vector, giving a vector as a
result. Note that the calculator knows to transpose
the vector in order to do this product.

(7.3.1)

2. The equivalent computations using matrix-matrix
multiplication would require the transpose
operation found in the MATH submenu of the
MATRX menu. Figure (7.3.2) shows that the 3 x 3
matrix A times the 3 x 1 matrix [[1 5 4]]" will

produce the appropriate 3 x 1 matrix. (7.3.2)

FA+l1,5,41]
[2 5 38]

Ax[[1.5-4]117

NaMES EDIT WETATE OFS  CFLA
det T Urnorm B idV] |l gidbc b
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Matrices and Vectors (Continued)

§4 — Submatrices and Matrix Arithmetic

1.

Of course, the product B#A is undefined since B is
2x 2 and A is 3 x 3. But the product of B and any

2 x 2 submatrix of A can be formed as in (7.4.1),
(7.4.2), and (7.4.3). The first two arguments of the
statement A(#, #, #, #) specify the upper left entry of
the desired submatrix, and the second two
arguments specify the lower right entry of the
submatrix. Consult the T7-86 Guidebook for further
details on accessing submatrices of a matrix.

With the TI-86 we can also redimension a matrix.
If rows or columns are added, then the new entries
will have value zero. We make B a 3 x 3 matrix by
executing the command shown in (7.4.4). The dim
command is found in the OPS submenu of the
MATRX menu, and the set brackets { } are found in
the LIST menu.

Also check to see that B is now a 3 x 3 matrix with
zeros filling in the new row and column as in (7.4.5).

Now the product B#A is defined and produces a
3 x 3 matrix as in (7.4.6).

Similarly, in (7.4.7) we see the computation of
A +5B.

(7.4.1)

(7.4.2)

(7.4.3)

(7.4.4)

(7.4.5)

(7.4.6)

(7.47)

B#AC1,1,2,22
[[18 -3]
[17 -411
B#AC2:2,3,32
[[3 7.1
[15 24]1
B#AC1,2.2,32
[[-3 4]
[-4 911
{3, 33+dim B
3 32
[cim Fill Dident I ref 0 rref b

B
[[3 1 8]
[4 5 8]
(6 @ @a]]
B+A
[[1a -3 4]
[17 -4 9]
(6 @ all
+5#B
[[1s 4 1]
[21 25 1]
[-1 3 411
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Matrices and Vectors (Continued)

§5 — Editing Using the Matrix Editor

1.

We have edited the matrices A and B from the home
screen, but it is usually easier to use the MATRX
editor to create and/or edit matrices on the TI-86.
For example, press [MATRX] (EDIT). Now select
B from the menu as the matrix to be edited and
press [ENTER]. Press the down arrow twice so that we
get (7.5.1).

We will first convert B back to a 2 x 2 matrix by
deleting row 3 and column 3. Press the right arrow
twice to move to column 3. Now select (DELe) to
delete the column the cursor is currently on. Press
the down arrow twice, then select (DELr). Note that
DELr deleted the row the cursor was on, and B is
now a 2 x 2 matrix as in (7.5.2).

We will make B into a 2 x 3 matrix by inserting a
column between the two columns currently in B.
Select (INSc). Note that INSe inserted a new
column to the left of the column the cursor was on,
and B is now a 2 x 3 matrix with zeros in the new
second column as in (7.5.3).

In (7.5.4) we are preparing to change the (2, 2) entry
of this new matrix to 7. Pressing will record
the change.

Finally, press to return to the home screen and
verify that B is indeed a 2 x 3 matrix as in (7.5.5).

(7.5.1)

(7.5.2)

(7.5.3)

(7.5.4)

(7.5.5)

[MATR=:B N3

[ . 1 0 ]
[y £ 0 ]
Lo 0 i} ]
1:1=3

INZr 8 DELr B IN3c 8 DEL< BFREAL

MATRR:B 2x2

& p— 1

21 2=0

INs¢ T DELr T INSc | DELc TFREAL
MATR®: B 2X3
[:

[T

Ea C—

s 2=H
[FHEr ToeLr T iRzc T DELe TrREALT

MATRX:E 2X3
[z

Ea C— ]

z:z=7l
([FINSF ToELr T iNzc T DEL: TRREAL]
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Matrices and Vectors (Continued)

§6 — Matrices with Complex Entries

1.

The TI-86 can do arithmetic using complex numbers,
and it can handle matrices with complex entries.

Access the MATRX editor and create the 2 x 2 matrix C

given by

| 1 i
¢ _[1+i 5+2f.]-
Recall that the TI-86 form of the complex number

a+bi is (a,b). Exit to the home screen and check
that C is as in (7.6.1).

Using the CPLX submenu of the MATRX menu, form
the conjugate of C as in (7.6.2).

Add C to this result by pressing [+, typing C, and
pressing to obtain (7.6.3). Note that the result
is a 2 x 2 matrix with complex entries, even though
the entries are real since they all have zero
imaginary parts.

Store this result in D as indicated in (7.6.4). Now we
will convert D to a real matrix by editing D. Access
the MATRX editor and select D as the matrix to edit.

Press the down arrow twice to obtain (7.6.5).

Now select (P REAL). Note that D becomes a 2 x 2
matrix with real entries. Exit to the home screen to
verify this as in (7.6.6).

(7.6.1)

(7.6.2)

(7.6.3)

(7.6.4)

(7.6.5)

(7.6.6)

C
[[£1.8) ¢8,1)]
[{1,1) ¢5,22]]
cond C
[[51.8) <@,-1)]
[SLs=1) 55 =231

NArESZ EDIT MATH

MAMES EDIT  MATH
cond 0 real §ima3 | abs Randle

NAMES EDIT MATH

MATR®:D 2x2
[ 00,07 1
[ izs00 (10,00 1
121 =(2:- @:’
[FHEF ToELr T IN5c T DEL TRREAL
D
[[2 B8]
[2 1a]]
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Matrices and Vectors (Continued)

§7 — Using Elementary Row Operations

The OPS submenu of the MATRX menu contains the commands which are used to do elementary row
operations on a matrix. In particular, we will use these commands to convert the matrix

1 -1 2 3
W=(2 0 1 0
3 -1 3 1

to row-reduced echelon form. First create W, either from the home screen or from the MATRX editor.
Figures (7.7.1) through (7.7.7) show the steps used in putting W in row-reduced echelon form from
the home screen. Each operation is in the OPS submenu. Working through these row operations one
step at a time is a worthwhile exercise.

a2z -3 -811
multRe.5:Ans; 27

[(rL -1 2 3.1

i1 -1.5 -3]

a2 -3 -811

rAddCAns, 2,12

I aud Ivﬁwupl rAdd Imu1tk|ﬂ1ﬁﬁddb

multRe -

5
l aud Irswupl ¥Rdd Immtﬁlmkaddl

aud IrFwarl FAdd Fraultk imkadde

(7.7.4) (7.7.5)

The syntax for the three row operations used here is:

mRAdd(multiplier, matrix, row to be multiplied by multiplier,
add to row)

multR(multiplier, matriz, row to be multiplied by multiplier)

rAdd(matrizx, row to add, add to row)

Note, however, that the process can be greatly rref U
shortened by selecting (rref) as in (7.7.8).

(7.7.8)
We could also now convert the entries in this 5 R & 11]
. g . AnstFrac
row-reduced echelon form matrix to fraction form [[1 8 1-2 B8]
by using PFrac from the MISC submenu of the Eg é 6-3/2 ?% ]

MATH menu as in (7.7.9).

(7.7.9)
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Matrices and Vectors (Continued)

§8 — Using rref on a Matrix With More Rows Than Columns

1. Create the matrix

1 2 3
lo 414

S=11 2 of
3 -1 4

If we try to use rref on S as in (7.8.1), we get the
result given in (7.8.2).

]

Select (QUIT). The error is caused by the fact that
the rref function requires that the number of rows
in the matrix be less than or equal to the number of
columns. We can get around this difficulty by
adjoining a column of zeros to S, then using rref,
and then deleting the last column of this result.

3. Figure (7.8.3) shows the command that we can use
to redimension S using the dim command. Since a
new column was created in S, it was automatically
filled in with zeros by the TI-86.

4. Figures (7.8.4) and (7.8.5) show the reduction of the
new S and the selection of the appropriate
submatrix of the result. This last matrix is the
row-reduced echelon form of the original matrix S.

(7.8.1)

(7.8.2)

(7.8.3)

(7.8.4)

(7.8.5)

T S
[
PSRl

—

=S

rref S

dim Fill Nident B ref 1 Fref b

ERROR 13 DIMEMSION

(FEaTo 1 T T Teom 1
4,42 +dim S
{4 42

|I dim I Fill Iid-znl:l Fef Irr-zF |4

rref S

[[
[
[
[

E=DE
EEEE

]
]
]
1

EEE—
EE—E

1

[din‘: Fill Dident | ref 1 Frefr b

Fln5(1=1:4=3)[

EEE—
EE—
S S

[
[
[
[ 1

|I dim I Fin |idtnt| (213 lrrtf [
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Matrices and Vectors (Continued)

§9 - Finding Eigenvalues and Eigenvectors

1. The TI-86 will also find eigenvalues and eigenvectors
for square matrices. Recall that the eigenvalues of a
real matrix can be complex numbers. Create the matrix

3 2 =2
P={-3 -1 3|
1 2 0

Then use eigVl found in the MATH submenu of the

MATRX menu to find the eigenvalues of P as in
(7.9.1).

2. Note in this case, the 3 x 3 matrix P has three
distinct eigenvalues. Now use eigVe to find some

eigenvectors for P. See (7.9.2). Each column of the

3 X 3 matrix in (7.9.2) is supposed to be an
eigenvector for P. Various important results from

matrix theory and linear algebra insure that if we let

U be the 3 x 3 matrix whose columns are
eigenvectors for P, then U'PU will be a diagonal
matrix with the eigenvalues of P appearing as the
diagonal entries.

3. We will test this result for the matrix P. Working

from the screen as in (7.9.2), press and type U
and press [ENTER] to store the eigenvector matrix in

U. Then compute U™ #P+U and get the 3 x 3 matrix

indicated in (7.9.3). The negative one exponent in
(7.9.3) was obtained by pressing [x-1).

4. Use round in the NUM submenu of the MATH menu
as in (7.9.4) to see that the nondiagonal entries are

most likely exactly zero.

(7.9.1)

(7.9.2)

(7.9.3)

(7.9.4)

[[3_ 2 '2]
[=3 =1 ]
) 1 2 B 1]
eigll P
{1 -1 2

NaMEE EDT WETAGE OFS  CPLY

det hd norr d ¢idV] 0 ¢idvc b

) £1. -1 2%
eigllc P
[[.7871B6781187 .577...

[BE-14 S

[.787106721187 .577..

NAMEZ ED0IT NETACE OF:  CFLY

det bl norrm b eidVl 0 ¢idic b
-TkPakl
[[1 -3.412
[le-13 - S.7471...
[a 1e-13 2
NAMES EDIT IETECE OFs
nore l eid] 1 ¢idvc b

] 13 2 =
r"-:nund{FInsp 163

[[1 8 a]

(@ -1 @]

@8 211

M FROE AMGLE HYF
iFart Derart D i

MISC
abs k
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Matrices and Vectors (Continued)

§10 — Using the Power Method

The Power Method is an algorithm which can be used to find the dominant eigenvalue and a
corresponding eigenvector for a square matrix. We will use the matrix P of §9 and a small amount of
the programming capabilities of the TI-86 to estimate the dominant eigenvalue for P using the Power
Method. In general, under the proper conditions, if x, is a starting vector, then the sequence

{a”} = {P ”;ru} will converge to a dominant eigenvector of P. Computationally, it is usually better to

normalize the vector P"x, at each step by dividing the vector by the magnitude of its largest
component. We use the max and ve»li features of the OPS submenu of the LIST menu to accomplish
this normalization. In particular, verli converts a vector to a list and max finds the largest member
of a list.

1.

Starting with the home screen as in (7.10.1), we can
Jjust repeatedly press [ENTER] to see the sequence of
vectors generated by the Power Method. Note that

weareusing [I 2 3]as,.

After ten or so presses of ,we use round from
the NUM submenu of the MATH menu as in (7.10.2).
From this result it is reasonable to conjecture that
[0 1 1] is a dominant eigenvector for P, and
computing P*[O 1 1] as in (7.10.3) verifies that

[0 1 l] is an eigenvector belonging to the
eigenvalue 2. We further conjecture that 2 is the
dominant eigenvalue for P, a conjecture verified in
(7.9.1) using other means.

(7.10.1)

(7.10.2)

(7.10.3)

[1.2,3]
123

[ 1
P#Ans:Ans-max{wcrli A
s

sum prod se4 Tikwe L uckli b

diAns. 5>
[4.9e-4 ,99951 1]

|l|||. FEOE ANGLE
¥ -

HYF

ITTEE FROE AMGLE HYF  MISC
roundl iFart T FFark I int abs k

We should note that the Power Method can fail. In particular, try repeating the steps in this section

usingx, = [1 1 I]. Theoretically, no convergence should occur for this choice of x,, since in exact

arithmetic, P*[l 1 l] = [3 -1 3] and P*[S -1 3] = [1 1 1]. However, round-off error turns out
to be helpful here, since pressing many times (in fact, 50 or more times) with this choice of x,
will still lead to the conjecture that [0 1 1] is an eigenvector.
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Matrices and Vectors (Continued)

§11 - The Gram-Schmidt Orthogonalization Process

The Gram-Schmidt Orthogonalization process for finding an orthogonal basis is an important process
in linear algebra and is linked to many important results in linear algebra and matrix theory. Recall

that given a basis v,,v,,...,v,, We generate an orthogonal basis as follows:
w, =v, and fork=2,....n
w, =, —((v,0,) / (w0, ))w, == (v, Wy, ) / (W, W, )Wy
where (:1:, y) indicates the dot product (more generally, any inner product).

Consider then the three-dimensional subspace of R' generated by the basis

v=[1 2 3 0,un=[1 0 0 0,»,=[2 3 4 0]

1. We will use the TI-86 to implement the [1.2,3,8]1+1: [1.8.8,0
Gram-Schmidt process to find an orthogonal basis 13U2¢ [2, 35 45 ?%*534 @l
w,, w,, w, for this same subspace of R". Note that
the dot product function is found in the MATH
submenu of the VECTR menu. Figure (7.11.1)
creates the first basis using the TI-86 variable names (7.11.1)

V1, V2, and V3.

2. In(7.11.2) through (7.11.4) the Gram-Schmidt U101 b w % @
Process is used to generate an orthogonal basis with
variable names W1, W2, and W3.

(7.11.2)
U2—Cdot (U2, W1 dot (W1
21D bl SLI2
[.928571428571 -.142.
NaMES EMT NETAICR OFS
cross Bunith §norm
(7.11.3)
V3—Cdot CU3. W1 dot Clll
2 W13l —Cdot (U3, W2~
dot 2, W2 ) 3#W2303
6 . 236769236762 -.1
| NAMES EDIT WEEA OFS
cross B unity ¥ norm dot
(7.11.4)

3. Figure (7.11.5) indicates that the new basis is, in dot. (1, W2 B
fact, orthogonal. Also, in (7.11.3)~(7.11.5), we have dot CU1 UE) 4B
made frequent use of the ability of the TI-86 to recall 4e-13

. . . . ot (W2, W3
previous entries by pressing [ENTRY] in order to -2.9g-14
do a little less typing on home screen entries, which
are similar to one another. (7.11.5)

100 USING THE TI-86, CHAPTER 7 © TEXAS INSTRUMENTS INCORPORATED



Matrices and Vectors (Continued)

Exercises
2 1 -1 1

1. Create the following 3 x4 matrix A=| 1 0 1 1 |using the matrix editor.
-2 1 0 -3

(a) Use elementary row operations to put A in row reduced echelon form.

(b) Use rrefto double check the result obtained in (a).

2 0 3

(d) Delete the third row of A and find the row reduced echelon form of the resulting matrix.

(¢) By trial and error, find a 2 x 2 submatrix S of A with the property that S*[l ﬂ . [1 ‘1}.

-1 1 -1
2. Create the 3 x 3 matrix B =’ 2 3 g ] and verify that det(4B) = 64 det(B).
5 1 2

3. Diagonalize the matrix B from Exercise 2 as was done in §9. Compute eigVe B and conjecture as
to what at least one “nice” eigenvector is for B.

4. Use the Power Method on the matrix S = I:Z g} Conclude that [1 4/9] is an eigenvector for S.

5. Find the row reduced echelon form for . Note that the TI-86 will not do this problem

W 00— D
o—o
O

directly, so you should first consider inserting an extra column.

6. Verify that W' is equal to (1/2)W* — 2W +(5/2)1, where I is the 3 x 3 identity matrix and

1 20
W=|0 2 0|
0 21
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