TI-nspire

Shortest Distances	Name
	ID: 10213

In this activity, you will explore three situations involving distances between points and lines.

- Shortest distance between two points.
- Shortest distance from a point to a line.
- Smallest total distance from two points on one side of a line and a point on the line.
Use this document to record your answers.

Problem 1 - Shortest Distance Between Two Points

Open the file Shortest Distances. On page 1.3, measure the distances $A B, A C$ and $B C$. Find the sum $A C+B C$ and compare its value to the distance $A B$.

1. Record three sets of distances in the chart:

AB	AC + BC

2. Complete the conjecture:

The distance $A B$ is \qquad the sum of the distances $A C+B C$
3. Where does C need to be located for the three segments to form a triangle?
4. When there is no triangle formed, what is true about the lengths $A B, A C$, and $B C$?

TI-nspire

Problem 2 - Shortest Distance From a Point to a Line

On page 2.2, measure the distance from point C to point D.
5. Drag point C along line $A B$ to determine when $C D$ is the smallest.

$$
C D=
$$

6. What else is true about the figure when CD is the smallest?
7. Complete the conjecture:

The distance CD is the smallest when \qquad

Problem 3 - Smallest Total Distance From Two Points to a Line

On page 3.2, measure distances DC and EC and find their sum.
8. Drag point C so the sum $D C+E C$ is as small as it can be.

$$
D C+E C=
$$

9. Make some measurements of the figure to help determine what is true when DC + EC is as small as possible. Explain your thinking.
10. Reflect point D over line $\overleftrightarrow{A B}$. What does this new point have to do with the location of point C and the minimum sum?
