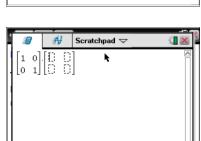
-Ü	Matrix Inverse	Name	
	Student Activity	Class	
Open	the TI-Nspire document <i>Matrix_Inverse.tns.</i>	1.1 1.2 1.3 ▶ Matrix_Inv_rev RAI	
In the	expression $x + 5 = 1$, the value of x must be 1/5. What would the	Algebra 2	
value	of x be in the equation $x \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$?	Matrix Inverses Move to the next page to learn about the	
This a	ctivity will show you how to find <i>x</i> .	unique properties of the Identity matrix.	

The number 1 is an incredibly powerful number in mathematics, and it can be written in many different ways. In matrix notation, the number 1 is expressed as $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and is called the *identity matrix*.

1. Multiplying 1 by any number results in no change to the number.

Test this in matrix notation by multiplying $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ by any 2 × 2 matrix.

- Open the Scratchpad. •
- Enter the identity matrix by pressing [m], selecting the 2 × 2 • matrix template and entering $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- Now enter another 2 x 2 matrix, but choose any element values • for the matrix. Press enter.
- When you finish question 1b, press esc to exit the • Scratchpad.
- What is the result of the matrix multiplication? a.
- Repeat this two more times using a different second matrix. b. What do you notice about the results? Will this always happen? Why or why not?



Scratchpad 🗢

₩

37 00 01 10

rad 📘 🗙

(II 🗙

0/99

0/99

Name	
Class	

Move to page 1.2.

Press ctrl) and	ctrl ┥ tO		
navigate through the lesson.				

2. Attempt to change the element values in matrix B until the product [A][B] is the identity matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Why is it so difficult to find the correct values for matrix B?

Move to page 1.3.

- 3. When the product of two matrices is the identity matrix, then the second matrix is the *inverse* of the first matrix. The inverse matrix can be calculated using a system of equations.
 - a. Identify the necessary system of equations by multiplying matrices A and B. Write your result below. Confirm your result by moving the slider to *yes* for *Show Equations*.
 - b. Determine the correct element values for matrix B by solving the system of equations. To display the solution to this system, move the slider to *yes* for *Show Solutions*.
 - c. Use the **Scratchpad** to confirm that [A][B] results in the identity matrix. What patterns do you notice between the element values in matrix A and matrix B?
- Using the Scratchpad, find the reciprocal of the determinant of matrix A by pressing
 DET(and entering matrix A.
 - a. Knowing the value of the reciprocal of the determinant, are there other patterns that you now notice between matrix A and matrix B?
 - b. Would you like to change anything you wrote for question 3? Try rewriting the matrix so each element has a common denominator before answering.

Name _____ Class _____

Move to page 1.4.

5. Use the calculated determinant to help choose correct values for matrix B so that the product, [A][B], results in the identity matrix.

Move to page 2.1.

6. This next page is for practice. Practice finding the correct values for matrix B so that the product, [A][B], is the identity matrix. Click the arrows by the question number to get a new question.

7. Amber says that the inverse of $\begin{bmatrix} -2 & 3\\ 1 & -5 \end{bmatrix}$ is $\begin{bmatrix} \frac{5}{7} & -\frac{3}{7}\\ -\frac{1}{7} & \frac{2}{7} \end{bmatrix}$. Is Amber correct? Why or why not?

8. Sean says every square matrix has an inverse. Is he correct? Explain.