

Exercice 2

Pondichéry, avril 2008 5 points

Partie A

On suppose connu les résultats suivants :

- \triangleright Dans le plan complexe, on donne par leurs affixes z_A, z_B et z_C trois points A, B et C. Alors $\left| \frac{z_B - z_C}{z_A - z_C} \right| = \frac{CB}{CA}$ et $\arg \left(\frac{z_B - z_C}{z_A - z_C} \right) = \left(\overrightarrow{CA}; \overrightarrow{CB} \right) (2\pi)$
- Soit z un nombre complexe et soit θ un réel : $z = e^{i\theta}$ si et seulement si |z| = 1 et $arg(z) = \theta$ (2 π)

Démonstration de cours : Démontrer que la rotation r d'angle α et de centre Ω d'affixe ω est la transformation du plan qui à tout point M d'affixe z associe le point M' d'affixe z' tel que $z' - \omega = e^{i\theta}(z - \omega).$

Partie B

Dans un repère orthonormal direct du plan complexe $(0; \vec{u}, \vec{v})$ d'unité graphique 2 cm, on considère les points A,B,C et D d'affixes respectives $z_A=-\sqrt{3}-i,z_B=1-i\sqrt{3},\ z_c=\sqrt{3}+i$ et $z_D=-1+i\sqrt{3}.$

- 1°) a) Donner le module et un argument pour chacun des quatre nombres complexes z_A, z_B, z_c et z_D .
 - b) Comment construire à la règle et au compas les points A, B, C et D dans le repère $(0; \vec{u}, \vec{v})$?
 - c) Quelle est la nature du quadrilatère ABCD?
- 2°) On considère la rotation r de centre B et d'angle $-\frac{\pi}{3}$. Soient E et F les points du plan définis par : E = r(A) et F = r(C).
 - a) Comment construire à la règle et au compas les points F et E dans le repère précédent ?
 - b) Donner l'écriture complexe de r.
 - c) Déterminer l'affixe du point E.

SOLUTION

Partie A

Soit
$$M(z)$$
 et $M'(z')$ avec $(z,z') \in \mathbb{C}^2$ tel que $M \neq \Omega$

$$M' = r(M) \Leftrightarrow \left\{ \overbrace{(\Omega M; \Omega M')}^{\Omega M} = \alpha (2\pi) \right\}.$$

Soit
$$M(z)$$
 et $M'(z')$ avec $(z, z') \in \mathbb{C}^2$ tel que $M \neq \Omega$

$$M' = r(M) \Leftrightarrow \begin{cases} \Omega M = \Omega M' \\ (\overline{\Omega M}; \overline{\Omega M'}) = \alpha \end{cases} (2\pi)^{\cdot}$$

$$\Leftrightarrow \begin{cases} |z - \omega| = |z' - \omega| \\ \arg\left(\frac{z' - \omega}{z - \omega}\right) = \alpha \end{cases} (2\pi) \Leftrightarrow \begin{cases} \left|\frac{z' - \omega}{z - \omega}\right| = 1 \\ \arg\left(\frac{z' - \omega}{z - \omega}\right) = \alpha \end{cases} \Leftrightarrow \frac{z' - \omega}{z - \omega} = e^{i\alpha} \quad \text{d'après le prérequis}$$

On a donc $z' - \omega = e^{i\theta}(z - \omega)$. Cette égalité est encore vérifiée si $M = \Omega$, c'est-à-dire si $z = \omega$.

Partie B

1°) a) Donner le module et un argument pour chacun des quatre nombres complexes $z_A, z_B, \ z_C$ et z_D .

On a
$$z_A = -\sqrt{3} - i$$
.
Donc $|z_A| = \sqrt{\left(-\sqrt{3}\right)^2 + (-1)^2} = \sqrt{3+1} = 2$.
Ainsi $z_A = 2\left(-\frac{\sqrt{3}}{2} - \frac{1}{2}i\right) = 2e^{-\frac{5i\pi}{6}}$, donc
 $Arg(z_A) = -\frac{5\pi}{6}$ (2 π)

Conclusion: $|z_A| = 2$ et $Arg(z_A) = -\frac{5\pi}{6}$ (2 π)

1.1	RAD AUTO RÉEL 🏻 🗓	
$za := \sqrt{3} - i$	-√3 -i	
za	2	
angle(za)	-5·π	
	6	
		_ V
	<u>▶</u> 3/9:	9

On a
$$z_B = 1 - i\sqrt{3}$$
.
Donc $|z_B| = \sqrt{1^2 + \left(-\sqrt{3}\right)^2} = \sqrt{1 + 3} = 2$.
Ainsi $z_B = 2\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 2e^{-\frac{i\pi}{3}}$, donc $Arg(z_B) = -\frac{\pi}{3}$ (2 π)

Conclusion: $|z_B| = 2$ et $Arg(z_B) = -\frac{\pi}{3}$ (2 π)

1.1	RAD AUTO RÉEL 🖺
${\text{angle}(za)}$	<u>-5·π</u>
	6
$zb := 1 - i \sqrt{3}$	<u>1-√3·i</u>
$\frac{ zb }{\operatorname{angle}(zb)}$	2
angie(zv)	$\frac{-\pi}{3}$
	6/99

On a
$$z_C = \sqrt{3} + i$$
.
Donc $|z_C| = \sqrt{\sqrt{3}^2 + 1^2} = \sqrt{3 + 1} = 2$.
Ainsi $z_C = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = 2e^{\frac{i\pi}{6}}$, donc $Arg(z_C) = \frac{\pi}{6}$ (2 π)

Conclusion: $|z_{\mathcal{C}}| = 2$ et $Arg(z_{\mathcal{C}}) = \frac{\pi}{6}$ (2 π)

1.1	RAD AUTO RÉEL 🖺
${\text{angle}(zb)}$	
<u></u>	3
$\frac{ zc = \sqrt{3 + i}}{ zc }$	$\frac{\sqrt{3}+i}{2}$
$\frac{ z }{\text{angle}(zc)}$	π
	6
	<u></u>

TI-*nspire*™

On a
$$z_D = -1 + i\sqrt{3}$$
.
Donc $|z_D| = \sqrt{(-1)^2 + \sqrt{3}^2} = \sqrt{1+3} = 2$.
Ainsi $z_D = 2\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 2e^{\frac{i2\pi}{3}}$, donc
 $Arg(z_D) = \frac{2\pi}{3}$ (2 π)

Conclusion: $|z_D| = 2$ et $Arg(z_D) = \frac{2\pi}{3}$ (2 π)

1.1	RAD	AUTO	RÉEL		
angle(zc)				π	\square
				6	
$zd:=1+i\cdot\sqrt{3}$			-1+	$\sqrt{3} \cdot i$	
zd				2	
angle(zd)				2·π	
				3	
					-
	15			12/9	9

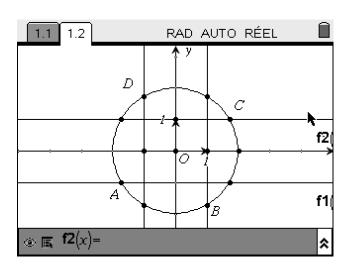
1°) b) Comment construire à la règle et au compas les points A, B, C et D dans le repère $(O; \vec{u}, \vec{v})$?

Etant donné que $|z_A| = |z_B| = |z_C| = |z_D| = 2$ alors OA = OB = OC = OD = 2. Donc les points A, B, C et D appartiennent au cercle de centre O et de rayon 2.

On sait que $z_A = -\sqrt{3} - i$, donc A appartient à la droite d'équation y = -1. Cette droite coupe de cercle de centre O et de rayon 2 en deux points. A est le point d'intersection d'abscisse négative.

 $z_{\mathcal{C}} = \sqrt{3} + i$, donc \mathcal{C} est le point d'intersection d'abscisse positive du cercle de centre \mathcal{O} et de rayon 2 avec la droite d'équation y = 1.

 $z_B = 1 - i\sqrt{3}$ donc B appartient à la droite d'équation x = 1. Cette droite coupe de cercle de centre O et de rayon 2 en deux points. B est le point d'intersection d'ordonnée négative.



 $z_D = -1 + i\sqrt{3}$ donc *D* appartient à la droite d'équation x = -1. Cette droite coupe de cercle de centre *O* et de rayon 2 en deux points. *D* est le point d'intersection d'ordonnée positive.

1°) c) Quelle est la nature du quadrilatère ABCD?

Soit R la rotation de centre O et d'angle $\frac{\pi}{2}$. On remarque que $z_D = iz_C$ puis $z_A = iz_D$ et $z_B = iz_A$ donc D, A et B sont les images respectives de C, D et A par R. Donc ABCD est un carré.

$2^{\circ})$ a) Comment construire à la règle et au compas les points F et E dans le repère précédent ?

E est l'image de A par la rotation de centre B et d'angle $-\frac{\pi}{3}$ donc BE = BA. E appartient au cercle C de centre B et de rayon BA.

1.1 1.2 RAD AUTO RÉEL

D

D

A

BAD AUTO RÉEL

A

BAD AUTO RÉEL

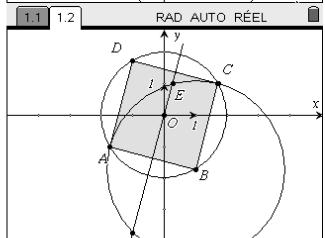
Le triangle BAE est isocèle en B.

De plus $(\overrightarrow{BA}; \overrightarrow{BE}) = -\frac{\pi}{3}$ (2π). Le triangle BAE est donc équilatéral, donc EA = EB, ce qui prouve que E appartient à la médiatrice du segment [AB].

On trace Δ la médiatrice du segment [AB].

 Δ coupe C' en deux points.

E est le point de $\Delta \cap C'$ qui vérifie $(\overline{BA}; \overline{BE}) = -\frac{\pi}{3}$ (2π)

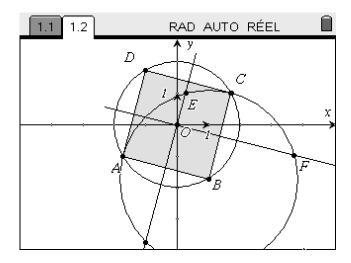


F est l'image de C par la rotation de centre B et d'angle $-\frac{\pi}{3}$ donc BF = BC. F appartient au cercle C' de centre B et de rayon BC (qui est aussi le cercle de centre B et de rayon BA).

En reprenant le raisonnement précédent, on trace Δ' la médiatrice du segment [CB].

 Δ' coupe C' en deux points.

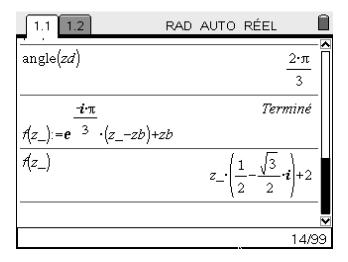
F est le point de $\Delta \cap C'$ qui vérifie $(\overline{BC}; \overline{BF}) = -\frac{\pi}{3}$ (2π)



2°) b) Donner l'écriture complexe de r.

La rotation r de centre B et d'angle $-\frac{\pi}{3}$ a pour écriture complexe : $z^{'}=e^{-\frac{i\pi}{3}}(z-z_B)+z_B$ donc $z^{'}=\left(\frac{1}{2}-\frac{i\sqrt{3}}{2}\right)\left(z-1+i\sqrt{3}\right)+1-i\sqrt{3}$ On peut développer cette expression, mais ce n'est pas demandé :

$$z' = \left(\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)z + \left(\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)\left(-1 + i\sqrt{3}\right) + 1 - i\sqrt{3}$$
$$z' = \left(\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)z + 2$$



2°) c) Déterminer l'affixe du point E.

$$= -\frac{\sqrt{3}}{2} - \frac{1}{2} + i\frac{\sqrt{3} - 1}{2} + \frac{3}{2}i + i\frac{\sqrt{3}}{2} + \frac{3}{2} - \frac{\sqrt{3}}{2} + 1 - i\sqrt{3}$$

$$= -\frac{\sqrt{3}}{2} - \frac{1}{2} + \frac{3}{2} - \frac{\sqrt{3}}{2} + 1 + i\left(\frac{\sqrt{3}}{2} - \frac{1}{2} + \frac{3}{2} + \frac{\sqrt{3}}{2} - \sqrt{3}\right)$$

Donc
$$z_E = 2 - \sqrt{3} + i$$

1.1 1.2	RAD AUTO RÉEL 🗍
	3 🖺
<u>−i·π</u>	Terminé
$f(z_{-}) := e^{-3} \cdot (z_{-})$	-zb)+zb
f(z_)	$z_{\perp} \cdot \left(\frac{1}{2} - \frac{\sqrt{3}}{2} \cdot i\right) + 2$
f(za)	$2-\sqrt{3}+i$
	<u>▼</u> 15/99