Maths and Music

Teachers Teaching with Technology
Professional Development from Texas Instruments

Student Worksheet
$\begin{array}{llll}7 & 8 & 9 & 10\end{array}$

Representing sound using sine waves

In this activity, we will be using TI-Nspire to represent the sound waves produced on a musical scale.

The sine curve

In trigonometry, you should already be familiar with using the sine, cosine and tangent ratios to solve questions involving right angled triangles. As you continue your studies in trigonometry, you will learn about sine, cosine and tangent curves.

Sound travels in waves and when these wave pulses reach your ear drum, signals are sent to the brain which allow you recognise the sounds. Sine curves can be used to represent sound waves. In this activity, you will have the opportunity to explore how the frequency of a sine curve affects the sound generated.

- Follow the instructions in the separate Sound Waves document to create a sine curve with a slider.
- Create a second sine curve with a slider for b.
- Create a third sine curve with a slider for c.
- Alternatively, open the Sound Waves.tns file.
- Click on the numbers and set the sliders so $\mathbf{a}=\mathbf{2 2 0}, \mathbf{b}=\mathbf{0}$ and $\mathbf{c}=\mathbf{0}$.

[^0]Author: Neale Woods

Octaves

Take two taut strings of the same material, one twice the length of the other, and pluck them. The short string vibrates with twice the frequency of the longer string and the resulting notes are an octave apart. The ratio of the octave, as Pythagoras discovered, is 2:1.

Let's explore octaves using our sliders.

Question 1

Change the first slider to $\mathbf{a}=\mathbf{4 4 0}$. What effect did this have on the sine curve?

Question 2

Change the first slider to $\mathbf{a}=\mathbf{1 1 0}$. What effect did this have on the sine curve?

Question 3

Change the sliders to $\mathbf{a}=\mathbf{1 1 0} \mathbf{~} \mathbf{b}=\mathbf{2 2 0}$ and $\mathbf{c}=\mathbf{4 4 0}$. What can you conclude about the relationship between the frequencies and the shapes of these three sine curves?

Question 4

Experiment by changing the value(s) of the sliders to various values. What happens to the sine curve when the frequency increases? What happens when the frequency decreases?

[^1]
Musical scales

A musical scale is a range of notes within an octave. There are twelve notes in a conventional musical scale. The approximate frequencies for one scale of A are shown below.

Note	A	A\# B b	B	C	C\# D b	D	D\# E b	E	F	F\# Gb	G	G\# Ab	A
Frequency	220	233	247	262	277	294	311	330	349	370	392	415	440

These notes on a piano keyboard are shown below. The highlighted notes in the table above represent the black keys.

The black note between A and B is A sharp ($A \#$). This note can also be written as B flat ($B b$). The other sharps can also be written as flats of the next note in the scale. E.g., $C \#=D$ b

Question 5

Let's look at a different octave for the A scale, one starting with a frequency of 110 and ending at 220 . This means that the frequency of the notes in this octave will be half the frequency of the those in the previous octave. Complete the table below, rounding your answers to the nearest whole value.

Note	A	A\# B b	B	C	C\# D b	D	D\# E b	E	F	F\# G b	G	G\# A b	A
Frequency	110					147							220

Question 6

What do you predict will happen to the frequency of the notes for the A octave from 440 to 880 ?

[^2]
Exploring concordant and discordant sounds

When the notes played together produce a pleasant sound, the notes are called concordant.
When the notes produce an unpleasant sound, the notes are called discordant.
Let's explore different combinations of notes to see which are concordant and which are discordant.
Go to your Graphs page with the sliders and create a fourth sine curve, which is the sum of the other three curves.

If you are using the Sound Waves.tns file, open the Graph Entry Line and tick the $\mathbf{f 4}(\mathbf{x})$ equation. To free up room on the screen, highlight the original equations, press ctrl + menu and select Hide. Be careful not to delete the equations.

To allow for the combined curve, press menu > Window/Zoom > Window Settings and change XMax: to 2.

[^3]
Question 7

Change the sliders to $\mathbf{a}=\mathbf{2 2 0} \mathbf{0} \mathbf{b}=\mathbf{4 4 0}$ and $\mathbf{c}=\mathbf{0}$ as these two frequencies represent a low and high note of the A octave. What do you notice about the resultant sine curve?

Question 8

Change the sliders to $\mathbf{a}=\mathbf{2 2 0}, \mathbf{b}=\mathbf{2 3 3}$ and $\mathbf{c}=\mathbf{0}$ as these frequencies represent the adjacent notes A and $\mathrm{A} \#$. What do you notice about the resultant sine curve?

For question 7, the two notes produce a smooth curve so the sound will be pleasant to the ear. These notes are concordant.

For question 8, the two notes produce a series of pulses so the sound will be unpleasant to the ear. These notes are discordant.

Below is a copy of the note frequency table from page 3.

Note	A	A\# B b	B	C	C\# D b	D	D\# E b	E	F	F\# G b	G	G\# A b	A
Frequency	220	233	247	262	277	294	311	330	349	370	392	415	440

Question 9

Set the sliders to the following frequencies to determine if these pairs or groups of notes are concordant (relatively smooth), discordant (small pulses) or very discordant (large pulses).

Notes	Result
A and B	
C and E	
A, C \# and E	
C and C\#	
C and E	

Notes	Result
D and D\#	
D and E	
D and F	
D and G	
C, E and G	

Question 10

From question 9, which pairs or groups of notes were very discordant? Why do you think this is so?

[^4]
Extension 1

Looking back at plucking a string, if the ratio is a third of the original length, a ratio of $3: 2$ results. The interval, or difference in the notes produced, is a fifth. A ratio of 4:3 (from a quarter length string) produces an interval of a fourth. Sounding an octave, a fifth, and a fourth together produces a harmonious sound that is pleasing to the ear - a musical chord.

Set the sliders to explore what happens when combining fourth and fifth intervals. Find examples that produce harmonious chords.

Extension 2

There are several different types of chords such as major, minor, augmented, etc.
For the A octave, the major chord is A,C\#,E, the minor chord is A, C, E and the augmented chord is A,C\#,F. Try these and other chords, and comment on the waves produced.

Extension 3

Experiment by playing these combinations of notes and chords on a piano or organ to see if they produce pleasant or unpleasant sounds.Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes
}

[^0]: © Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

[^1]: (C) Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained

[^2]: (C) Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

[^3]: (C) Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes

[^4]: C Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained

