AL 2.1- Energia cinética ao longo de um plano inclinado

Autora: Fernanda Neri

TI-Nspire™

Palavras-chave:

Energia Cinética; Centro de massa; Massa; Velocidade e Forças Conservativas

Ficheiros associados:

Energia cinética num plano inclinado_atividade _professor; Energia cinética num plano inclinado _atividade_aluno; Energia cinética num plano inclinado _atividade_aluno1; Energia cinética. tns

1. Objetivos

Calcular a energia cinética de um carrinho em vários pontos da trajetória ao longo de uma rampa, quando este é abandonado do cimo da rampa relacionado a energia cinética com a distância percorrida.

2. Introdução teórica

Um corpo que se move ao longo de um plano inclinado tem energia cinética e energia potencial.

A energia cinética de um determinado sistema depende da massa e da velocidade com que se movimenta. Para que haja alteração da energia cinética do sistema é necessário que a sua velocidade varia. Assim pela 2ª lei de Newton, um sistema só alterará a sua velocidade se nele atuarem forças cuja resultante seja diferente de zero.

O trabalho realizado pela resultante das forças que atuam no centro de massa do corpo em movimento de translação é igual à variação da energia cinética no intervalo de tempo em que as forças atuam.

$$W_{\overrightarrow{FR}} = \Delta E_c$$

3. Comentários

O sensor de posição não deve ser colocado junto do carro.

Cada grupo deve fazer um trabalho diferenciando numa das condições (altura ou massa).

O documento " energia cinética .tns" é um documento que permite ao docente avaliar rapidamente o que o aluno sabe da atividade experimental, podendo analisar os dados resultantes de uma experiência já efetuada.

Procedimento 1

4. Material

Calha de baixo atrito

Carro de baixo atrito

CBR

Unidade portátil TI-Nspire ou computador com software TI-Nspire

Lab Cradle

Elevador ou suporte Universal

5. Procedimento

A - Coloque a calha com uma certa inclinação.

B - Coloque a unidade portátil no Lab Cradle

B1. Ligar o sensor de posição a um dos canais digitais do Lab Cradle

Ficha do professor Física10º ano - Unidade II

Se aparecer o écran ao lado escolher o ícone

É comum o sensor ser logo reconhecido aparecendo o seguinte écran

B₂. Como o tempo necessário para a recolha de dados de dados é curto Pressiona menu 1:experiência \rightarrow 7: modo de recolha \rightarrow 1: Baseado no tempo

Com a tecla tab mude de campo escrevendo os valores que desejar.

B₃. Quando pretender iniciar pressione a seta verde (canto superior esquerdo) e começará a registar os dados.

6. Resultados

Como a experiência é muito rápida podem fazer-se vários ensaios, podendo ainda eliminar os dados que não lhe interessam.

Selecione a zona que pretende eliminar do seguinte modo:

menu → 2: Dados → 5:Rasurar Dados → 1: Na região selecionada

Abra uma nova página "Listas e Folha de Cálculo"

menu \rightarrow ctrl doc \rightarrow 4: Adicionar Listas e Folhas de Cálculo

Introduza novas variáveis (Tempo, Posição, Velocidade e Energia Cinética)

Calcule a E_c sabendo a massa do carrinho (0.365Kg) usando a própria folha de cálculo

= [□{\$\$} [=](1/2)0.365 x velocidade x²]

1.1	1.2	1.3 🕨 *ene	ergia cinética	$\overline{}$	(]	×
Ate	empo	[∎] posição	■velocid	₽ _{ec}	ļ	î
•				=0.5*0.	.365	
1	1.22	0.756	0.02	0.0000)73	
2	1.24	0.756	0.01	0.0000	018	
3	1.26	0.756	0.02	0.0000	073	
4	1.28	0.757	0.03	0.0001	164	
5	1.3	0.757	0.03	0.0001	164	ľ
A1	1.22				< I	

Ficha do professor Física10º ano - Unidade II

Abra uma nova página de gráficos e estatística

menu \rightarrow ctrl doc \rightarrow 5: Adicionar Dados e Estatística

Para ver a reta que melhor se ajusta faça

menu \rightarrow 4: analisar- \rightarrow 6: regressão

Escolhendo depois a reta de regressão que melhor se ajusta

Resultados obtidos com inclinações diferentes.

Procedimento 2

4. Material

Calha de baixo atrito Carro de baixo atrito Photogate Unidade portátil TI-Nspire ou computador com software TI-Nspire Lab Cradle Elevador ou suporte Universal Suporte para a célula

5. Procedimento

Coloque a unidade portátil no Lab Cradle

Ligue a célula a um dos canais digitais do Lab Cradle.

Se aparecer o écran ao lado escolher o ícone

Este sensor normalmente não é reconhecido de imediato então deve proceder do seguinte modo:

 $menu \rightarrow 1$: Experiência $\rightarrow 9$: Configurar sensores $\rightarrow 1$: Photogate

Como por defeito aparece selecionada a aplicação "Tempo de Movimento" terá de escolher o que lhe interessa para esta experiência que é "Porta"

 $menu \rightarrow 1$: Experiência $\rightarrow 6$: Configuração de recolha \rightarrow Porta

Ficha do professor Física10º ano - Unidade II

Marque a distância do objeto que vai passar na célula e indique que termine a recolha "em paragem". Aqui o nº de eventos não tem importância.

Para iniciar pressione a seta verde bolo canto superior esquerdo. Largue o carrinho e verá que os valores de tempo e velocidade surgem de imediato. Registe a distância do ponto de lançamento a cada posição da célula.

6. Resultados

Na tabela que surge, o tempo não interessa pois regista o tempo ente cada medição até parar a experiência. Neste caso o tempo que interessa é dado por B2U (tempo em que a célula esteve bloqueada), pode verificar que a velocidade resulta do quociente entre a distância do objeto e o tempo. (V_{inst}).

₹ 1.1 ►	*Não guardado 🗢	<[] 🗙
Detalhes da reco	oha	
Comprimento de	o objecto (metros):	
S. M	0.050	
PI Terminar recolh	a de dados:	_
Т	Em paragem	
M Pi Número de e∨er	ntos: 16	
т		
Fi	OK Cance	lar

∢ 1.1 ▶	🔓 *Não guardado 🗢 🛛 🚺 🖡		
	run1		
	TempoEstado B2U	V	
♀ ♀ ✓	1	- 1	
run1 👻	2		
Tempo (s)	3		
Estado da p	4		
Block to Un	5		
Velocidade (6		
	7	Π	
	8		
O t∼ ⊞	9		
	٢	>	

1:Adicionar Calculadora 2:Adicionar Gráficos 3:Adicionar Geometria 4:Adicionar Listas e Folha de Cálculo 5:Adicionar Dados e Estatística 6:Adicionar Notas 7:Adicionar Vernier DataQuest

0.25

0.35

menu -→ 4: Analisar-→6: Regressão

Calcule o trabalho realizado pela força resultante que atua no carro depois de este ser largado.

7. Cálculos

Elabore uma tabela na página Listas e Folha de Cálculo.

Copie para essa lista os dados que constam em B2U e V e já na página de Listas e Folha

de Cálculo apague as linhas em que não há valores.

Complete a tabela com a energia cinética e a distância.

Trace a função da regressão que melhor se ajusta aos dados.

Construa um gráfico de E_c em função da distância percorrida pelo carrinho na página **Dados e Estatística**.

ctri doc ▼

0.45 0.55 0.65 0.75

8. Conclusões

A energia Cinética de translação é diretamente proporcional à distância percorrida pelo carrinho no plano inclinado.

Como $W_{\overline{F_R}} = \Delta E_c \quad e \quad W_{\overline{F_R}} = \mathbf{F} \operatorname{d} \cos \alpha \quad \operatorname{então} \quad \Delta E_c = \mathbf{F} \operatorname{d} \cos \alpha$ Se o declive da reta é $\frac{\Delta E_c}{d}$ então o declive corresponde a $\mathbf{F} \cos \alpha$

E neste caso a única força que atua é a $\overrightarrow{F_{g}}$ logo para o mesmo ângulo quanto maior a massa maior será o declive. E para a mesma massa quanto maior for o ângulo maior será o declive.

 $\Delta E_c = \text{mg d sin } \theta$

9. Questionários

Energia cinética num plano inclinado_atividade_aluno

Preparação da experiência:

Um carrinho ao descer uma rampa aumentará a energia cinética.

Massa e velocidade.

Sim, para que possamos concluir sobre a diferença na Energia Cinética por alteração de um dos fatores, tais como massa ou inclinação da rampa.

Sim porque para a mesma velocidade a massa é diretamente proporcional à energia cinética.

 $W_{\overrightarrow{FR}} = \operatorname{mgsin} \alpha \cdot d$

$$E_c = \frac{1}{2} mv^2$$

Se aumentarmos a inclinação da rampa a energia cinética aumenta.

$$W_{\overrightarrow{FR}} = \Delta E_c$$

 $\Delta E_c = \text{mgd} \sin \theta$

Resultados:

c) O declive da reta é igual a mg sin α

d)

 i) Esboço de gráficos da energia cinética do carrinho com a distância percorrida quando a massa do carrinho for metade da inicial.

Azul com massa = m	Azul com massa = m vermelho massa = $\frac{1}{2}$ m	Ec.		
1	vermelho massa = $\frac{1}{2}$ m	Azul com massa = m		
vermelho massa = - m	2	vermelho massa = $\frac{1}{2}$ m		

 ii) Esboço de gráficos da energia cinética do carrinho com a distância percorrida quando o Carrinho é lançado com uma velocidade inicial diferente de zero.

1 .	1 1.2 👌 *Unsaved 🗢	(<mark>)</mark> 🗙
Ec	graph f3	
2		
Ĩ.	inicial vermelho	u
	azul partido com velocidade inicial	
ЭЭБ		

Energia cinética.tns

Camião

 $Ec = \frac{1}{2} mv^2$

necessitamos da massa

Ao produto da resultante das forças (Fr) que atuam no corpo pelo co-seno do ângulo feito entre a força e o deslocamento.

Ao produto da componente Px pelo seno do ângulo feito pela rampa em relação ao plano.

Aumenta para o dobro

Quadruplica