Finding Linear Models Part II

Math Concepts	Overview
- Linear functions	The student will use the TI-83 Plus to find the average rate of change and intuitively develop a - Graphing - Slope/rate of change Materials - TI-83 Plus
plot.	

- This activity assumes that students have already entered the data, selected an appropriate window, and graphed a scatter plot.

We continue the discussion of the example from Finding Linear Models Part I shown below:

Year	Profit in Thousands of Dollars
90	125
91	205
92	296
93	510
94	620
95	904
96	1040

Figure 1

Teacher Notes

- Students should have already entered the data into lists, set the Window values, and graphed the scatter plot. (Figures 1, 2, and 3)
- The goal for this activity is to have students find a good linear model for the data without using the linear regression function of the TI 83 Plus. That feature should be reserved until students fully understand how to analyze and find a linear model themselves.

－Find an average rate of change for the data set．

Press STAT ENTER to open the data editor．Move the cursor so that it is on L3．（Figure 4）

L1	Lz	1	3
90	125	－－－－－－	
91	Ef		
易	510		
94	680		
宿	1040		
LЗ $=$			

Press 2nd STAT \square 7．（Figure 5）

Figure 5
\qquad

Press 2nd $2 \square$ to complete the line shown on the entry line of the edit screen．（Figure 6）Press ENTER to execute the command．
－Students will use the spreadsheet－like features of the data editor to find the average change in profit per year．

L1	L2	174	3
90	125		
呂	8		
曻	510		
94	920		
宿	1040		

L1	L2	L3	3
90	125	Fix	
91	20	91	
或	碞	214	
9	680	214	
呂	9044	136	

Press 2nd STAT $\square 5$ to find the sum of the numbers in L3． （Figure 8）

Figure 8

Press 2nd 30 ［ ENTER．（Figure 9）

－The Δ List command defines：
$\mathrm{L} 3(1)=\mathrm{L} 2(2)-\mathrm{L} 2(1)$
$\mathrm{L} 3(2)=\mathrm{L} 2(3)-\mathrm{L} 2(2)$
L3（3 ）＝L2（4）－L2（3）
and so on．
（Figures 7 and 8 ）
－Students may find the mean or average rate of change by traditional methods i．e．finding the sum of the values in L3 and dividing by＂ 6 ＂or they may use the TI－83 Plus to continue the analysis．（Figures 8 and 9）

Use the TI－83 Plus to find the mean directly by pressing 2nd STAT \square^{\square} 3．（Figures 10）

Figure 10

Press 2nd $3 \square$ ENTER．（Figure 11）

Once students have found the average rate of change in profit， they are ready to find a function to model the data．
－Find a mathematical model to fit the data by entering a function in $Y=$ and editing it to find the best fit．

The average rate of change tells us that each year the profit increases by about $\$ 152.50$ ．

Press WINDOW and change＂Xmin＂to＂ 0 ＂and＂Ymin＂to＂ 0 ＂． （Figure 12）

```
WIK\IIOW
    XMir=6
    XMEx=200
    x=c=10
    Ymir=6
    MMOx=12GE
    WEG=1 E E 
    Xres=1
```

Figure 12
－When finding models by this method it is often advisable to change the window so that the x －axis and y－axis are visible． Usually students are better able to adjust the function if the axes are visible．

For the first "guess", let Y1= 152.5x. (Figure 13)

Figure 13

To shift the function to the right, edit Y1 as shown. (Figure 14)

Figure 14

Press GRAPH. (Figure 15)

Figure 15

Change the window setting to the original values and determine what other changes might need to be made. (Figure 16)

- Discuss with students what must be done to adjust the graph of the function. In order to move the graph to the right, what must be changed?
- Remind students that there should be as many points above the line as below the line.
- How should this
function be changed to better fit the data? Have students continue to adjust the rate of change (slope) and the y intercept until the fit is acceptable.

A final version might be similar to the function shown below.
(Figure 17)

$\begin{aligned} & \text { Yog Fiot Flotz } \\ & Y_{1} 165(x-96)+20 \\ & Y_{2}= \\ & Y_{4}= \\ & Y_{5}= \\ & Y_{G=}= \end{aligned}$

Figure 17

