Chapter 7

Probability as Relative Frequency

Topic 15 begins with a simulation to justify the concept of the Law of Large Numbers. This concept states that as you take larger and larger samples, the relative frequency of which an event happens approaches the probability of that event happening. Topics 16 and 17 cover the binomial and geometric probability functions of the TI-89, along with simulations to understand the results, and calculations to find the mean and standard deviations.

Topic 15—Law of Large Numbers Simulation

Simple Random Samples

Example: A baseball player has a true .333 batting average (has a probability of $1 / 3$ of getting a hit each time at bat). This could also be thought of as $1 / 3$ of the population favors your candidate in a primary election (for those who do not like baseball). The baseball player might get four hits in a row, or miss five times in a row, but in the long run you expect him to get $1 / 3$, or $331 / 3 \%$ hits. (The percent of those polled that favor your candidate will fluctuate widely for small samples, but will approach the true $331 / 3 \%$ as sample size approaches the population size.)

You will simulate each at-bat as a toss of a die, but will only consider 1,2 , or 3 spots - you will ignore 4,5 , or 6 . If you were actually tossing die by hand it would be more efficient to use 1 and 6 (for example) as a hit, and $2,3,4$, or 5 as no hit.

For this chapter, use folder CLASS3. To change folders:

1. Press MODE.
2. Press \odot to select Current Folder, and then press (1).
3. Highlight CLASS3 and press ENTER.

From the Home screen:

1. Press CATALOG and select RandSeed.
2. Press ENTER to paste RandSeed to the status line.
3. Type $\mathbf{7 8 9}$ and press ENTER (top of screen 1).

From the Home screen:

1. Press CATALOG, and then press F3 Flash Apps.
2. Select randint(...tistat and paste it in the status line.
3. Type $\mathbf{1 , 3 , 5}$).
4. Press ENTER ENTER for results of $\{11313\}$ and \{11323\} which can be considered as:

1	1	3	1	3
S	S	F	S	F

and

1	1	3	2	3
S	S	F	F	F

where \mathbf{S} represents a success or hit and \mathbf{F} represents a failure or miss.
5. Repeat RandSeed 789. From the Flash Apps menu, enter randbin(...tistat, and then type (1,1/3,5), and press ENTER ENTER for:

1	1	0	1	0
S	S	F	S	F

and

1	1	0	0	0
S	S	F	F	F

(See screen 2.)
You see that both simulations give the same results, with 1 for successes and $\mathbf{0}$ for failures. Notice that after two at-bats, the baseball player is batting 100%, after three at-bats, 67%, and after four at-bats, 75%.

(2)

(tivis			
- RandSeed 789 - tistat. randbin(1, 1/3, 5) (1. 1. 0. 1. 0. - tistat. randbin($1,1 / 3,5$)			
	. 1.		0.
TIStat.randBin $(1,1 / 3,5)$			

There is a lot of variability, so observe what happens in the long run.
6. Set RandSeed 789 (top of screen 3).
7. Enter the integers $\mathbf{1}$ to $\mathbf{1 5 0}$ in list1, with seq $(x, x, 1,150) \rightarrow$ list1 as in Topic 1.
8. Store the results of 150 at-bats with tistat.randbin $(1,1 / 3,150) \rightarrow$ list 2 , which starts with \{1 1010 1\} (bottom of screen 3).
9. Type cumsum(list2) \rightarrow list3 and press ENTER for \{122334...\} cumulative sums, which indicates you started with two consecutive hits $=1+1$, but still only had two hits after the third time at bat, or $2=1+1+0$, but picked up the third hit on the fourth time at bat with $3=1+1+0+1$ (screen 4$)$.
10. list3/list1 $\boldsymbol{\rightarrow}$ list4 gives $\{11.666667 .75 \ldots$. $\}$, indicating that you are hitting 100% for the first two times at bat, but 2 of $3=67 \%$ after 3 at-bats, and 3 of $4=75 \%$ after four at-bats (screen 4).

See the summary in the Stats/List Editor (screen 5).

To view this graphically from the Stats/List Editor:

1. Set up and define Plot $\mathbf{1}$ as Plot Type: xyline, Mark: Dot, X List: list1, Y List: list4, and Use Freq and Categories?: NO.
2. Set up $-[Y=]$ with $\mathbf{y 1}=\mathbf{1} / \mathbf{3}$. Select [F6] Style, 2:Dot.
3. Deselect other plots and functions.

(4)

(5)

4. Set up the window using \square [wINDOW] with the following entries:

- \quad xmin $=0$
- $\quad \mathrm{xmax}=10$
- $\mathbf{x s c l}=10$
- $y m i n=0$
- $y m a x=1.1$
- $\mathrm{yscl}=.1$
- \quad xres $=2$
(See screen 6.)

5. Press [GRAPH], F3 Trace, and (1) (1) for the first 10 at-bats (screen 7).
6. Change the xmax value to 100 (\checkmark WINDOW]) and then press \rightarrow [GRAPH] (screen 8). Notice the first tenth of screen 8 duplicates the whole of screen 7 compressed. After 100 at-bats, the line is quite close to $1 / 3$.

In screen 9, notice that after 100 at-bats there are 32 hits or 32% hits, list3[100] = 32, and 1 out of 100 off the true average of .33 . After 150 at-bats, there are list3[150] =51. You are only one over the 50 out of 150 that would give $331 / 3 \%$.

The Law of Large Numbers is sometimes given in terms of the mean, indicating that as the sample size increases, the mean of the sample will approach the population mean. With 1 being a success and $\mathbf{0}$ a failure, the mean of this sample of 1 's and 0 's is the number of hits out of the number at-bats, or a proportion, as in this example:

$$
\frac{32}{100}=.32 \text { or } \frac{51}{150}=.34
$$

(6)

$\begin{aligned} & \times m i n=0.1 \\ & \times m a \times=10 . \\ & \times s c 1=10 . \\ & y m i n=0 . \\ & y \mathrm{max}=1.1 \\ & y \mathrm{scl}=1 \\ & \times \mathrm{res}=2 . \end{aligned}$	
CLASS3	RAAD AUTD FUNC

(7)

(8)

(9)

Topic 16—Binomial Distribution

Example: A hitter has a probability of $1 / 3$ of getting a hit each time at bat, with each at-bat independent of other at-bats. (A population has $331 / 3 \%$ of the people favoring a primary candidate and people are picked at random from the population.)

In the next five times at bat (or in a random sample of size 5):

1. What is the probability of getting exactly three hits?
a. From the Stats/List Editor, press F5 Distr for B:Binomial Pdf.
b. Enter these settings:

Num Trials, n: 5
Prob Success, p: 1/3
X Value: 3
(See screen 10.)
c. Press ENTER to display Pdf $=. \mathbf{1 6 4 6 0 9}=\mathbf{P}(3)$
(screen 11). The hitter has about a 16% chance of getting three hits.

If the X Value is left blank as in screen 12, then the entire probability distribution is partially shown in a list called Pdf (screen 13).
(10)

(13)

d. Press ENTER to display screen 14 with list Pdf pasted in the last column of the Stats/List Editor. The fourth value is $\operatorname{Pdf}[3]=P(3)=.16461$ as before .
2. What is the probability of getting at least two hits?
a. You want $P(2)+P(3)+P(4)+P(5)$ which you could add from screen 14, or press F5 Distr and select C:Binomial Cdf to display screen 15 with these settings:

Num Trials, n: 5
Prob Success, p: 1/3
Lower Value: 2
Upper Value: 5
b. Press ENTER for a result of
$\mathbf{P}(2)+\mathbf{P}(3)+\ldots+\mathbf{P}(5)=\mathbf{0 . 5 3 9 0 9 5}$, or over a 50% chance of getting at least two hits in five times at bat (screen 16).

The Mean and Standard Deviation

For a binomial distribution with $n=5, p=1 / 3$:

1. Set up a new list, list6, with values 0, 1, 2, 3, 4, and 5. These values represent each time at bat. (See screen 14.)
2. Press F4 Calc, 1:1-Var Stats, with List: list6, and Freq: statvarslpdf.
3. Press ENTER to display screen 17, with
$\bar{x}=1.66667=\mu=\boldsymbol{n} \boldsymbol{p}=5 *(1 / 3)$, or the expected number of hits, in the long run, for five times at bat. You could also verify from the table of values that the standard deviation
$s_{x}=1.05409=\sigma_{x}=\sqrt{n p q}=\sqrt{5 *(1 / 3) *(2 / 3)}=1.05409$.
(14)

Fivi FFict	FFit Fur		
list.4	1ist5	list. 6	Pdf
0		0	. 13169
. 62.5		1	- 32922
. 79167		2	. 32922
- 79167		3	- 1E4E1
-91667		5	- 04115
. 95833		5	. 0.0412
Pdf [4] $=.164610905349794$			
ELisss:	Eifu iliti	- Fulk	4/8

(15)

(16)

(17)

Probability Histogram

1. Set up and define Plot $\mathbf{1}$ as Plot Type: Histogram, X List: list6 (from the class3 folder), Hist. Bucket Width: 1, Use Freq and Categories?: YES, and Freq: Statvars\pdf.
2. Set up the window using \square [window] with the following entries:

- \quad xmin $=-.5$
- $\quad \mathrm{xmax}=5.5$
- $\quad x s c l=1$
- \quad ymin $=-.16$
- $y m a x=.48$
- $\mathrm{yscl}=0$
- \quad xres $=1$
(See screen 18.)

3. Press [GRAPH], and then press F3 Trace (screen 19).

Notice the center and spread. What does the histogram tell you about the hitter?

Simulation

From Topic 15, you could toss a die repeatedly in groups of five tosses at a time (screen 20). To repeat the experiments:

1. Set RandSeed 789 (top of screen 20).
2. Enter tistat.randbin(5,1/3,2) and press ENTER (screen 21).

(18)

(19)

(20)

To simulate 100 experiments of five at-bats:

1. Set RandSeed 789 (see Topic 15).
2. Calculate and store the number of successes for each of the 100 experiments in list1 with tistat.randbin $(5,1 / 3,100) \rightarrow$ list1 (screen 22).
3. Set up and define Plot 1 as Plot Type: Histogram, X List: list1, Hist. Bucket Width: 1, and Use Freq and Categories?: NO.
4. Set up the window using \square [window] with the following entries:

- $\quad x \min =-.5$
- $\quad \mathrm{xmax}=5.5$
- $\quad \mathrm{xscl}=1$
- $y \min =-16$
- $y m a x=48$
- $\mathrm{yscl}=0$
- \quad xres $=1$
(See screen 23.)

5. Press \square [GRAPH], and then press F3 Trace (screen 24).
6. Compare with screen 19 and the following table. The $P(X)$ values are from list Pdf in screen 14. For example, $x=0$ occurs 10 times in the simulation, while you would expect it to occur about $100 * .1317 \approx 13.17$ times.
(22)

(24)

\mathbf{X}	Freq	$\mathbf{P}(\mathbf{X})$
0	10	.1317
1	32	.3292
2	36	.3292
3	15	.1646
4	7	.0412
5	0	.0041
Total	100	1.0000

These comparisons show a reasonable simulation for using only $n=100$.
7. From the Stats/List Editor, press F4 Calc, 1:1-VarStats, with List: list1, Freq: 1 and press ENTER ENTER (screen 25).
8. Compare $\bar{x}=1.77$ and $\mathrm{s}_{\boldsymbol{x}}=1.0527$ (screen 25) with $\mu=1.67$ and $\sigma_{x}=1.054$ (screen 17).

Topic 17-Geometric Distribution

Example: If the probability of getting a hit is $1 / 3$:

1. What is the probability that the first hit will occur on the fourth time at bat? (If $1 / 3$ of the population prefers a particular brand product, what is the probability that the fourth person randomly selected is the first to prefer this product?)
a. From the Stats/List Editor, press F5 Distr, F:Geometric Pdf, with Prob Success, p: 1/3, and X Value: 4 (screen 26).
b. Press ENTER for Pdf $\mathbf{= 0 . 0 9 8 7 6 5} \boldsymbol{= P (4)}$, or about a 10% chance for a first hit on the fourth at-bat (screen 27).
c. From the Home screen this would be calculated by

$$
\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)=\left(\frac{2}{3}\right)^{3} *\left(\frac{1}{3}\right)=\frac{8}{81}=.098765 .
$$

There is a $2 / 3$ probability that the batter does not get a hit for each of his first three at-bats and a $1 / 3$ probability of getting a hit on his fourth at-bat.
2. What is the probability that a hit will occur in one of the first four trips to the plate, or that the product is favored by one of the first four people sampled?
a. From the Stats/List Editor, press F5 Distr, G:Geometric Cdf, with Lower Value: 1, and Upper Value: 4 (screen 28).
(25)

Note: This answer is the fourth entry in the list Pdf shown in screen 32.
(28)

b. Press ENTER to display

Cdf $=.802469=\mathbf{P}(\mathbf{1})+\mathbf{P}(\mathbf{2})+\mathbf{P}(3)+\mathbf{P}(4)$ (screen 29).
c. The Geometric Pdf (F5 Distr, F:) could have been used with Prob Success, p: 1/3, and X Value: $\{1,2,3,4\}$ (screen 30).
d. Press ENTER to display $\mathbf{P}(\mathbf{1})$ and $\mathbf{P (2)}$ (screen 31).
e. Press ENTER and the last list in the Stats/List Editor is named Pdf. This list has individual values for $\mathbf{P}(1), \mathbf{P}(2), \mathbf{P}(3)$, and $\mathbf{P (4)}$ (screen 32).
3. What is the probability that it will take more than four at-bats to get a hit?
$P(5)+P(6)+P(7)+\ldots .=1-[P(1)+P(2)+P(3)+P(4)]=$ $1-.802469=0.197531$, or about a 20% chance.
(29)

(30)

(31)

(32)

The Mean of a Geometric Distribution

Example: Estimate the mean of a geometric distribution with $p=1 / 3$.

1. Store the integers from 1 to 50 in list 6 with $\mathbf{s e q}(\mathbf{x}, \mathbf{x}, \mathbf{1}, \mathbf{5 0})$ as in Topic 1.
2. Store the geometric distribution probabilities (at least the first 50) in list Pdf by selecting F5 Distr, F:Geometric Pdf, with Prob Success, p: 1/3, and X Value: list6 (screen 33).
3. Press ENTER to return to the Stats/List Editor (screen 34).
4. Press F44 Calc, 1:1-VarStats on List: list6,

Freq: statvars\pdf, and press ENTER for $\bar{x}=3$ (screen 35).
This confirms what theory tells you, that is, $\mu=1 / p=1 \div 1 / 3=3$.
(33)

(34)

Probability Histogram

1. Set up and define Plot $\mathbf{1}$ as Plot Type: Histogram, X List: list6, Hist. Bucket Width: 1, Use Freq and Categories?: YES, and Freq: statvars\pdf.
2. Set up the window using \square [window] with the following entries:

- $\quad \mathrm{xmin}=.5$
- $\quad x m a x=12.5$
- $\quad x s c l=1$

- $y m i n=-.16$
- $y m a x=.48$
- $y s c l=0$
- \quad xres $=1$
(See screen 36.)

3. Press [GRAPH], and then press F3 Trace with a distribution skewed to the right and each probability rectangle $2 / 3$ the height of the previous one (screen 37).

Simulation

From the Home screen:

1. Set RandSeed 987 (see Topic 15).
2. Enter tistat.randbin $(\mathbf{1}, \mathbf{1} / \mathbf{3}, \mathbf{6})$.
3. Press ENTER ENTER with the first 10 values (screen 38).

0	0	0	1	0	0	1	0	0	1
F	F	F	S	F	F	S	F	F	S

The first success was on the fourth at-bat (FFFS). Since each of the results is independent of the others, you can start the experiment over and a hit on the third at-bat (FFS) and again the third at-bat. In summary, 4, 3, 3 for the first three experiments.

Note: This simulation could be done by tossing a die as in Topic 15.
(38)

If you continue in this manner for 10 experiments, the following results are obtained: 4, 3, 3, 3, 1, 1, 3, 1, 1, 5 and could be used to estimate $P(1) \approx 4 / 10=.40, P(2) \approx 0, P(3) \approx .40$, $P(4) \approx .10, P(5) \approx .10$.

To get better estimates, continue for 100 experiments and store the results in list1. The results, aided by running the program on the next page after setting RandSeed 987, are in the table with the actual probabilities also given.

\mathbf{X}	Freq	$\mathbf{P}(\mathbf{X})$
1	30	.333
2	26	.222
3	15	.148
4	9	.099
5	6	.066
6	4	.044
7	4	.029
8	3	.020
9	2	.013
10	1	.009
11	0	.006
Total	100	.989

With the outcomes stored in list1:
4. Set up and define Plot $\mathbf{1}$ as Plot Type: Histogram, X List: list1, Hist. Bucket Width: 1, and Use Freq and Categories?: NO.
5. Set up the window using \square [wINDOW] with the following entries:

- $\quad \mathrm{xmin}=.5$
- $\quad \mathrm{xmax}=12.5$
- $x s c l=1$
- $y m i n=-16$
- $y m a x=48$
- $\mathrm{yscl}=0$
- xres $=1$
(See screen 39.)

6. Press \square [GRAPH], and then press F3 Trace (screen 40).

In addition to the relative frequencies being approximately correct in the table, the histogram in screen 40 is very similar to the one in screen 37 .

(39)

-min $=-16$.	
x $\mathrm{re}=1$ -	
cLAS3	FIuct

```
PROGRAM
()
Prgm
TIStat.clrList(list1)
For i, 1, 100
1->count
1bl aaa
If TIStat.randBin(1,1/3)=\emptyset Then
count+1->count
Goto aaa
Else
count->list1[i]
EndIf
EndFor
EndPrgm
```

