Getting Started with Calculus

Name _

TI-*nspire* cas

Limits

ID: 8997

In this activity, you will explore:

• finding the limit of a function at a specified point

Open the file *CalcAct08_Limit_EN.tns* on your handheld and follow along with your teacher for the first two screens. Use this document as a guide to the activity and as a place to record your answers. Move to page 1.2 and wait for further instructions from your teacher.

Class		
1.1 1.2 1.3 1.4 RAD AUTO REAL		
LIMITS		
Calculus		
Evaluating limits graphically		
and numerically		
ana hameneaty		

Page 1.2 (shown at right) displays the graph of f(x). Notice that, for values of *x* near x = a, the function f(x) appears to take on a value close to *L*. This sketch provides a graphical method of "seeing" the value of a limit. In this activity, you will investigate graphical and numerical methods of finding limits. You will also look at some situations in which limits do not exist.

Problem 1 – Using graphical and numerical methods to find the value of a limit

Advance to page 1.3. You will see a screen similar to the one at right, showing the graph of $f1(x) = x^2$.

You will investigate the limit of f(x) as x approaches 1, denoted $\lim_{x\to 1} x^2$, both graphically and numerically.

Grab point *x* and slowly move the point towards the left. Think of this action as "approaching x = 1 from the right." What does the value of this limit appear to be? In other words, what value does f1(x) appear to approach as *x* approaches 1?

Now move point x to the left of x = 1 and start "moving towards x = 1 from the left." Do you get the same limit?

If these limits are the same, then we say the limit exists and is equal to the value of f1(x) as x approaches 1 from both the left and right sides.

You will now take a look at this same situation numerically. Press (+) + (-) to insert a function table. By default, the *x*-values start at 0 and increment by 1. You need to modify the table settings in an effort to focus on values of *x* that are <u>very close</u> to 1. Select **MENU > Function Table > Edit Function Table Settings** to access the function table settings. Change **Table Start** to 1 and **Table Step** to **0.1**, and press (-). You can navigate up and down the table using the **NavPad**. What does the limit as *x* approaches 1 appear to be?

Go back and edit the function table settings such that **Table Start** is **1** and **Table Step** to **0.01**. Does the limit as *x* approaches 1 appear to be the same?

Repeat this procedure using a **Table Step** equal to **0.001**. Are you still convinced of the limit as *x* approaches 1? Explain why this procedure seems to make sense when finding a limit.

Advance to page 1.4. You will see the graph of $f2(x) = \frac{x^2 - 1}{x - 1}$. What do you notice about this graph at x = 1?

As before, drag point *x* towards x = 1 from the left and from the right. What does the value of $\lim_{x\to 1} \frac{x^2 - 1}{x - 1}$ appear to be? **1.1 1.2 1.3 1.4 RAD AUTO REAL 1.1 1.2 1.3 1.4 RAD AUTO REAL**

Based on the value of **f2**(1), do you think that this limit exists? If so, what is its value?

Add a function table and edit the table settings to look at values of x very close to 1. From a numerical standpoint, what does the value of this limit appear to be?

Advance to page 1.5 where you will see a graph of

TI-*NSPIre*[™]CAS

$$\mathbf{f3}(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & x \neq 1\\ 1, & x = 1 \end{cases}$$
. Drag point x towards $x = 1$ and

note the value of $\lim_{x\to 1} \mathbf{f3}(x)$.

What is the value of f3(1)? Does this value change what you think should be the value of the limit as x approaches 1?

Add a function table and edit the table settings to look at values of x very close to 1. From a numerical standpoint, what does the value of this limit appear to be?

Advance to page 1.6. You will see the graph of a piecewise defined function, f4(x), on the interval [0, 4]. Use your findings from the previous examples to determine the values of $\lim_{x \to a} f4(x)$, $\lim_{x \to a} f4(x)$, and

 $\lim_{x \to \infty} \mathbf{f4}(x)$. The values can be found *graphically* by

dragging point *x* or *numerically* by adding a function table and changing the table settings.

What do you think is the value of $\mathbf{f4}(x)$ as x approaches 0 "from the right," denoted $\lim_{x\to 0^+} \mathbf{f4}(x)$?

What do you think is the value of f4(x) as x approaches 4 "from the left," denoted $\lim_{x \to a} f4(x)$?

Explain why these last two limits are called "one-sided limits."

Problem 2 – Exploring limits that do not exist

TI-*nspire*™cas

Advance to page 2.1. You will see a graph of $f1(x) = \frac{|x-1|}{x-1}$.

Use Graph Trace (MENU > Trace > Graph Trace) to investigate approaching x = 1 from the left and the right. Explain why $\liminf_{x \to 1} f(x)$ does not exist.

Do either $\lim_{x \to 1^+} \mathbf{f1}(x)$ or $\lim_{x \to 1^+} \mathbf{f1}(x)$ exist? Explain.

Advance to page 2.2. You will see a graph of $f2(x) = sin(\frac{1}{x})$. You will be investigating $lim_{x\to 0} sin(\frac{1}{x})$ graphically and numerically.

Start by selecting **MENU > Window > Zoom – In**. Move the cursor to the origin and press (a) repeatedly to zoom in on the graph at x = 0. What do you notice about the value of **f2**(*x*) near x = 0? **1.5 1.6 2.1 2.2 PRD AUTO REAL 13** y **f2**(x)=sin($\frac{1}{x}$) -20 -13

Insert a function table and set the **Table Step** to a very small number such as 0.00012. Does f2(x) appear to be approaching a limiting value for values of *x* near zero?

Problem 3 – Using other methods to find the value of a limit

Advance to page 3.1. You will see a graph of

TI-*NSpire* CAS

 $f1(x) = \frac{\sqrt{x^2 + 9} - 3}{x^2}$. You will investigate the value of

 $\lim_{x\to 0} \mathbf{f1}(x)$ graphically and numerically as was done before.

1.6 2.1 2.2 3.1 ▶ R	ad auto real 🛛 🗎
$f1(x) = \frac{\sqrt{x^2 + 9} - 3}{x^2}$	· <i>y</i>
0.05	
-2.5 -0.1	0.2 2.5

Select the **Zoom – In** function. Move the cursor to point where f1(x) passes through the *y*-axis and press (a) four of five time to zoom in on the graph at x = 0. Use the **Graph Trace** tool to estimate the value of this limit. What does the value of the limit appear to be?

Use the **Zoom – In** function several more times to zoom in on this area of the graph until you see a change appear. What do you think is the value of the limit now?

You will now investigate this limit numerically. Insert a function table and set **Table Step** to a small number such as **0.001**. What does the value of the limit appear to be?

Change **Table Step** to a very small number such as **0.0000001**. Now what does the value of the limit appear to be?

You will resolve these inconsistencies by evaluating this limit in the *Calculator* application. Advance to page 3.2 and select **MENU > Calculus > Limit** to access the **Limit** command, and evaluate the $\lim_{x \to 0} \mathbf{f1}(x)$. What is the value of this limit?

You can use the **Limit** command to evaluate any limit, including those that you explored in this activity. Evaluate each of the following:

a.
$$\lim_{x \to 1} x^2$$
 b. $\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$ **c.** $\lim_{x \to 1} \left\{ \frac{x^2 - 1}{x - 1}, x \neq 1 \right\}$ **d.** $\lim_{x \to 1} \frac{|x - 1|}{x - 1}$