Chapter 10

Sampling Distribution of Differences

Topic 21 covers the distribution of a difference between two independent sample proportions or two independent sample means.

Topic 21—Sampling Distribution of a Difference Between Two Independent Sample Proportions or Two Independent Sample Means (Simulations)

Sampling Distribution of a Difference Between Two Independent Sample Proportions

This simulation will reinforce the mathematical reality that the mean of the distribution of $\hat{p}_{1}-\hat{p}_{2}$ is $p_{1}-p_{2}$ (the difference of the two population proportions) and the variance $\sigma_{p_{1}-p_{2}}{ }^{2}=\sigma_{p_{1}}{ }^{2}+\sigma_{p_{2}}{ }^{2}=\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}$
(the sum of the two population variances) and thus
$\sigma_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}$.

Note: In later topics it will be hypothesized that $\mathbf{p}_{1}=\mathbf{p}_{2}\left(\right.$ or $\left.\mathbf{p}_{1}-\mathbf{p}_{2}=0\right)$, so you will look at that case here. The difference need not be zero, however, and in the next section you will observe such an example.

Example: $n_{1}=50, p_{1}=0.33$, and $n_{2}=35, p_{2}=0.33$. One hundred samples from population one were generated in Topic 19, screens 5, 6, and 7 and saved in list1.

Change to folder RACE, since you will be using some data from Topic 19.

1. From the Home screen, set RandSeed 987.
2. Calculate tistat.randbin $(\mathbf{5 0}, \mathbf{3 3}, \mathbf{1 0 0}) / \mathbf{5 0} \rightarrow$ list1.
3. Press ENTER to display screen 1.
4. Use CATALOG to calculate mean(list1)

$$
\text { mean }=.329 \approx p_{1}=.33
$$

5. Use CATALOG to calculate stdDev(list1)
$\mathrm{stdDev}=\mathrm{s}_{x}=0.063 \approx$

$$
\sigma_{\hat{p}_{1}}=\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}}=\sqrt{\frac{(.33)(.67)}{50}}=.066
$$

6. Press 2nd [ANS] $\wedge 2$ and then press ENTER to display the third line in screen 2.
7. Use CATALOG to calculate variance(list1). (See screen 2.) variance $=\mathrm{s}_{x}^{2} \approx .004 \approx \sigma_{\hat{p}_{1}}^{2}=\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}=.0044$.

Compare with Topic 19, screen 7.
Simulate 100 samples from population two and store in list2, similar to Topic 19 and shown in screens 3 and 4.

1. Set RandSeed 9876.
2. Calculate tistat.randbin($35, .33,100$)/35 \rightarrow list 2 .
3. Press ENTER to display screen 3.
4. Use CATALOG to calculate mean(list2)
mean $=.330857 \approx \mathrm{p}_{2}=.33$.
5. Use CATALOG to calculate stdDev(list2)
$\operatorname{stdDev}=.079493 \approx \sigma_{\widehat{\mathrm{p} 2}}=\sqrt{\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}=\sqrt{\frac{(.33)(.67)}{35}}=.07948$

(2)

6. Use CATALOG to calculate variance(list2)
variance $=.006319 \approx \sigma_{\widehat{p_{2}}}{ }^{2}=\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}=\frac{(.33)(.67)}{35}=.006317$
(See screen 4.)

7. Store the difference using list1 - list2 \rightarrow list 3 and find the mean, standard deviation, and variance of this distribution of differences (screen 5).

Note that
list3[1] = list1[1] - list2[1] = . 36 - . 257143 = . 102857 from
screens 1,3 , and 5 .
(5)

8. Calculate the mean, stdDev, and variance of list3.

$$
\begin{aligned}
& \text { mean }=.001857 \approx \mu_{\hat{p}_{1-}} \hat{p}_{2}=.00=p_{1}-p_{2}=.33-.33 \\
& \text { stdDev }=.104406 \approx \sigma_{\hat{p}_{1}-\hat{p}_{2}}=.104=\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}=\sqrt{\frac{(.33)(.67)}{50}+\frac{(.33)(.67)}{35}} \\
& \text { variance }=.010901 \approx \sigma_{\hat{p}_{1}-\hat{p}_{2}}{ }^{2}=.0107=\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}=\frac{(.33)(.67)}{50}+\frac{(.33)(.67)}{35}
\end{aligned}
$$

(See screen 5).
It is important to note that it is not true that $\sigma_{\hat{p}_{1}-\hat{p}_{2}}=\sigma_{\hat{p}_{1}}+\sigma_{\hat{p}_{2}}$.
$\sigma_{\hat{p}_{1}-\hat{p}_{2}}=.10 \neq .07+.08=.15=\sigma_{\hat{p}_{1}}+\sigma_{\hat{p}_{2}}$
On the other hand it is true that $\sigma_{\hat{p}_{1}-\hat{p}_{2}}{ }^{2}=\sigma_{\hat{p}_{1}}{ }^{2}+\hat{p}_{2}{ }^{2}$.
$\sigma_{\hat{p}_{1}-\hat{p}_{2}}{ }^{2}=.01=.004+.006=\sigma_{\hat{p}_{1}}{ }^{2}{ }^{+} \hat{p}_{2}{ }^{2}$
9. From the Stats/List Editor, set up and define Plot 1, Plot 2, and Plot 3 as modified boxplots with Mark: Square, using list1, list2, and list3, respectively.
10. From the Plot Setup screen, press F5 ZoomData and F3 Trace, which graphically shows the distribution of \hat{p}_{1} 's at the top, \hat{p}_{2} 's in the middle with the same mean as \hat{p}_{1} 's but with greater spread, and then the distribution of $\hat{p}_{1}-\hat{p}_{2}$'s at the bottom centered at zero with still greater spread (screen 6).
(6)

11. From the Stats/List Editor, press F2 Plots and select 3:Plotsoff to turn off the plots.
12. Press F2 Plots and 2:Norm Prob Plot to define Plot 4 using list3 with Mark: Dot.
13. Press ENTER to return to the Stats/List Editor.
14. Select F2 Plots, 1:Plot Setup and F5 Zoom Data to get a probability plot on the distribution of the differences in list3 (screen 7).

Observe that the distribution of the differences also is normally distributed because the sample size is large enough.

Sampling Distribution of a Difference Between Two Independent Sample Means

The simulation will reinforce the fact that $\mu_{\bar{x}_{1}-\bar{x}_{2}}=\mu_{1}-\mu_{2}$ and the variance $\sigma_{\bar{x}_{1}-\bar{x}_{2}}{ }^{2}=\sigma^{2} \bar{x}_{1}+\sigma_{\bar{x}_{2}}^{2}=\frac{\sigma_{1}{ }^{2}}{n_{1}}+{\frac{\sigma_{2}}{n_{2}}}^{2}$, and the Standard Deviation $\sigma_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{\sigma_{1}{ }^{2}}{n_{1}}+\frac{\sigma_{2}{ }^{2}}{n_{2}}}$.

Simulate 100 samples of size 9 from a normal population with $\mu=85$ and $\sigma=15$ and store in list1 (similar to Topic 20, screen 17, but in that case it was a uniform distribution).

For this section, change to folder BLDTALL.

1. From the Home screen, set RandSeed 321.
2. Calculate
seq(mean(tistat.randnorm(85,15,9)),x,1,100) \rightarrow list1
(second line of screen 8).

Simulate 100 samples of size 16 from a normal population with $\mu=\mathbf{6 0}$ and $\sigma=\mathbf{2 0}$ and store in list2.

1. Calculate
seq(mean(tistat.randnorm(60,20,16)),x,1,100) \rightarrow list2 (third line of screen 8).
(7)

2. Store the differences using list1 - list2 \rightarrow list3 (top of screen 9).
(9)

list $1-1$ ist $2 \rightarrow$ list 3	ist3
(40.4069 17.8375	775 9.017
- mean(list1)	85.122
- mean(list2)	60.2003
- mean(list3)	24.9217
mean(list3)	

3. Find the mean, standard deviation, and variance of list1, list2, and list3 (screens 9, 10, and 11).

Note that:
mean(list1) $=85.122 \approx 85=\mu_{1}=\mu_{\bar{x}_{1}}$
mean(list2) $=60.2003 \approx 60=\mu_{2}=\mu_{\bar{x}_{2}}$
mean(list3) $=24.9217 \approx 25=\mu_{1}-\mu_{2}=\mu_{\bar{x}_{1}-\bar{x}_{2}}$

Note: stdDev(list3) does not equal $\frac{\sigma_{1}}{\sqrt{n_{1}}}+\frac{\sigma_{2}}{\sqrt{n_{2}}}=5+5=10$.
$\operatorname{stdDev}($ list1 $)=5.05627 \approx 5=\frac{\sigma}{\sqrt{n_{1}}}=\frac{15}{\sqrt{9}}=\sigma_{\bar{x}_{1}}$
$\operatorname{stdDev}($ list 2$)=5.37592 \approx 5=\frac{\sigma_{2}}{\sqrt{n_{2}}}=\frac{20}{\sqrt{16}}=\sigma_{\bar{x}_{2}}$
$\operatorname{stdDev}($ list 3$)=7.4496=\sqrt{55.4965} \approx \sqrt{50}=\sqrt{\sigma_{\bar{x}_{1}-\bar{x}_{2}}{ }^{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}{ }^{2}}{n_{2}}}$
variance(list1) $=25.5659 \approx 25=\frac{\sigma_{1}{ }^{2}}{n_{1}}=\frac{15^{2}}{9}=\sigma_{\bar{x}_{1}}{ }^{2}$
variance(list2) $=28.9005 \approx 25=\frac{\sigma_{2}{ }^{2}}{n_{2}}=\frac{20^{2}}{16}=\sigma_{\bar{x}_{2}}{ }^{2}$

variance(list3) $=55.4965 \approx 50=\sigma_{\bar{x}_{1}}{ }^{2}+{\sigma_{\bar{x}_{2}}}^{2}=\frac{\sigma_{1}{ }^{2}}{n_{1}}+\frac{\sigma_{2}{ }^{2}}{n_{2}}=\sigma_{\bar{x}_{1}-\bar{x}_{2}}{ }^{2}$
4. From the Stats/List Editor, set up and define Plot 1,

Plot 2, and Plot 3 as modified boxplots with
Mark: Square, using list1, list2, and list3.
5. Deselect all other plots.
6. From the Plot Setup screen, press F5 ZoomData to display screen 12 with list1 at the top, list2 in the middle, and the distribution of the difference with the greater spread at the bottom.
7. For another look at the results, set up and define Plot 1, Plot 2, and Plot 3 as histograms with x : list1, list2, and list3, and Hist. Bucket Width: 4.
8. Set up the window using \rightarrow [wiNDOW] with the following entries:

- $\quad x m i n=3$
- $\quad \mathrm{xmax}=99$
- $x s c l=4$
- $y m i n=-15$
- $y \max =45$
- $y s c l=0$
- xres $=1$
(See screen 13.)

9. Press [GRAPH] (screen 14).

