\qquad
\qquad Date:
Geometry: 8.5 Proportions in Triangles: Side-Splitter Theorem
A midsegment of a triangle is a segment connecting the midpoints of two sides.
Construction:
Part 1: Construct $\triangle \mathrm{ABC}$.
∇ Press WINDOW and scroll down to Triangle and press ENTER.
∇ Move the cursor and press enter at three different points to create your triangle.
∇ Label the vertices of your triangle \mathbf{A}, \mathbf{B}, and \mathbf{C}.

Part 2: Construct point D.
∇ Press WINDOW and scroll up or down to Point and hit \square, then scroll up or down to Point on and press ENTER.
∇ Scroll and put point \mathbf{D} on $\overline{\mathbf{A B}}$ so that \mathbf{D} is closer to point \mathbf{B} than to point \mathbf{A}. and press ENTER. Your point will not be on $\overline{\mathbf{A B}}$ unless it is dancing when you press ENTER.
∇ Label the point \mathbf{D}.
Part 3: Construct $\overleftrightarrow{\mathbf{D E}}$ so that it is parallel to $\overline{\mathbf{A C}}$.
∇ Press ZOOM and scroll up or down to Parallel and press ENTER.
∇ Scroll to point \mathbf{D} and press ENTER.
∇ Scroll to $\overline{\mathbf{A C}}$ until it starts to dance press ENTER.
∇ Press WINDOW and scroll up or down to Point and hit \square, then scroll up or down to Intersection and press ENTER.
∇ Scroll to the intersection of $\overleftrightarrow{\mathbf{D E}}$ and $\overline{\mathbf{B C}}$. When they both start to dance press ENTER.
∇ Label the point \mathbf{E}.
Part 4: Construct DE .
∇ Press GRAPH scroll up and down to Hide/Show and hit \square, then scroll up or down to Object and press ENTER.
∇ Scroll to $\overleftrightarrow{\mathbf{D E}}$ and when it starts to dance press ENTER.
∇ Press WINDOW and scroll up or down to Segment and press ENTER.
∇ Scroll to point \mathbf{D} and press ENTER.
$\nabla \quad$ Scroll to point \mathbf{E} and press ENTER.

Exploration:

1. Find (with Cabri® Jr.) the lengths AD, DB, CE, EB on your screen. (GRAPH - Measure \square D. \& Length).
a. Make sure you use two decimal accuracy.
2. Drag point \mathbf{D} to four different locations on $\overline{\mathbf{A B}}$. For each location record the four lengths in the table below.

Measurement	Location 1	Location 2	Location 3	Location 4
Length AD				
Length DB				
Length CE				
Length EB				

3. For each column in the table above, find the ratios $\frac{\mathbf{A D}}{\mathbf{D B}}$ and $\frac{\mathbf{C E}}{\mathbf{E B}}$. Record the values in the table below to the nearest hundredths.

$\frac{\mathbf{A D}}{\overline{\mathbf{D B}}}$				
$\frac{\mathbf{C E}}{\mathrm{EB}}$				

Conjecture:

4. Use the table to complete the following conjecture about the relationship between $\frac{\mathbf{A D}}{\mathbf{D B}}$ and $\frac{\mathbf{C E}}{\mathbf{E B}}$.

If $\overline{\mathbf{D E}}$ is parallel to side $\overline{\mathbf{A C}}$, then \qquad .
5. Turn to page 446 in your book and copy Theorem 8.4.

Side-Splitter Theorem: \qquad
6. Using the Side-Splitter Theorem. Solve for \mathbf{x}.

7. Turn to page 447 and copy corollary to Theorem $8-4$ below. Corollary to Theorem 8-4:

