Name: Period: Date: Geometry: 8.5 Proportions in Triangles: Side-Splitter Theorem A midsegment of a triangle is a segment connecting the midpoints of two sides. A midsegment of a triangle is a segment connecting the midpoints of two sides. Construction: Part 1: Construct Δ ABC. Press WINDOW and scroll down to Triangle and press ENTER. ∇ Press WINDOW and scroll down to Triangle and press ENTER. ∇ Move the cursor and press enter at three different points to create your triangle. ∇ Labeled down to formation to the table and table at the table and table at table a

 ∇ Label the vertices of your triangle **A**, **B**, and **C**.

Part 2: Construct point D.

- ∇ Press WINDOW and scroll up or down to **Point** and hit \blacktriangleright , then scroll up or down to **Point on** and press ENTER.
- ∇ Scroll and put point **D** on \overline{AB} so that **D** is closer to point **B** than to point **A**. and press ENTER. Your point will not be on \overline{AB} unless it is dancing when you press ENTER.
- ∇ Label the point **D**.

Part 3: Construct \overrightarrow{DE} so that it is parallel to \overrightarrow{AC} .

- ∇ Press ZOOM and scroll up or down to **Parallel** and press ENTER.
- ∇ Scroll to point **D** and press ENTER.
- ∇ Scroll to \overline{AC} until it starts to dance press ENTER.
- ∇ Press WINDOW and scroll up or down to **Point** and hit \triangleright , then scroll up or down to **Intersection** and press ENTER.
- ∇ Scroll to the intersection of \overrightarrow{DE} and \overrightarrow{BC} . When they both start to dance press ENTER.
- ∇ Label the point **E**.

Part 4: Construct DE.

- ∇ Press GRAPH scroll up and down to **Hide/Show** and hit \triangleright , then scroll up or down to **Object** and press ENTER.
- ∇ Scroll to $\overleftarrow{\mathbf{DE}}$ and when it starts to dance press ENTER.
- ∇ Press WINDOW and scroll up or down to **Segment** and press ENTER.
- ∇ Scroll to point **D** and press ENTER.
- ∇ Scroll to point **E** and press ENTER.

Exploration:

- Find (with Cabri® Jr.) the lengths AD, DB, CE, EB on your screen. (GRAPH Measure ▷ D. & Length).
 a. Make sure you use two decimal accuracy.
- 2. Drag point **D** to four different locations on \overline{AB} . For each location record the four lengths in the table below.

Measurement	Location 1	Location 2	Location 3	Location 4
Length AD				
Length DB				
Length CE				
Length EB				

3. For each column in the table above, find the ratios $\frac{AD}{DB}$ and $\frac{CE}{EB}$. Record the values in the table below to the nearest hundredths.

AD DB		
CE EB		

Conjecture:

4. Use the table to complete the following conjecture about the relationship between $\frac{AD}{DB}$ and $\frac{CE}{EB}$.

If **DE** is parallel to side **AC**, then _____5. Turn to page 446 in your book and copy **Theorem 8.4**. Side-Splitter Theorem:

6. Using the Side-Splitter Theorem. Solve for **x**.

7. Turn to page 447 and copy corollary to Theorem 8-4 below.Corollary to Theorem 8-4:	