Counting Factors

Student Activity

$$
\begin{array}{llll}
7 & 8 & 9 & 10
\end{array}
$$

TI-Nspire
$\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1\end{array}\right]$
Coding

Student

60 min

Finding Factors

There are many ways to determine the quantity of factors for a specified number. The most common method is to test the divisibility for every number up to the specified number.

Example: Determine the quantity of factors for the number 18.

$18 \div 1=18$	Factor	$18 \div 2=9$	Factor	$18 \div 3=6$	Factor
$18 \div 4=4$ rem 2	Not a factor	$18 \div 5=3$ rem 3	Not a factor	$18 \div 6=3$	Factor
$18 \div 7=2$ rem 4	Not a factor	$18 \div 8=2$ rem 2	Not a factor	$18 \div 9=2$	Factor
$18 \div 10=1$ rem 8	Not a factor	$18 \div 11=1$ rem 7	Not a factor	$18 \div 12=1$ rem 6	Not a factor
$18 \div 11=1$ rem 7	Not a factor	$18 \div 12=1$ rem 6	Not a factor	$18 \div 13=1$ rem 5	Not a factor
$18 \div 14=1$ rem 4	Not a factor	$18 \div 15=1$ rem 3	Not a factor	$18 \div 16=1$ rem 2	Not a factor
$18 \div 17=1$ rem 1	Not a factor	$18 \div 18=1$	Factor		

The process above is exhaustive and you may already have ideas on how this can be sped up, however this concept will provide a basis for a simple program to count the quantity of factors of a given number.

Instructions:

Start a new document and insert a calculator application.
Locate the mod command using: Number $>$ Number Tools $>$ Mod
Determine the result of the following calculations:
Mod $(18,6)$
$\operatorname{Mod}(18,5)$

Qx 1: Actions	
$\frac{1}{2} \times 52$ 2: Number	1: Convert to Decimal
X= 3: Algebra	2: Approximate to Fraction
$f(x)$: Calculus	3: Factor
17. 5. Probability	4: Least Common Multiple
1: Round	Highest Common Factor
2: Integer Part	Remainder
3: Fractional Part	Fraction Tools
4: Sign	Number Tools
5: Mod	Complex Number Tools
6: Floor	
7: Ceiling	

$\operatorname{Mod}(18,12)$

Question: 1.

Based on your experimentation, what value does the MOD command return?

Question: 2.

If $\operatorname{MOD}(a, b)=0$, what does this say about the relationship between a and b ?

Question: 3

If $\operatorname{MOD}(a, 2)=0$, what does this say about the value of a ?

Question: 4.

Write a statement similar to those above that would be true for any odd number ' a '.

[^0]Create a new program by selecting:

Functions \& Programs $>$ Program Editor $>$ New

Call the program: FactorCount
Note that 'FactorCount' is one word as program names cannot contain spaces.

The first task is to request a number from the program user. Use the I/O (input / output) menu to access the Request command. The request command can include a text prompt followed by a variable to store the number.

Request "Enter a number",n

- Quotation marks: " " can be entered by pressing [Ctrl] + [x]
- The comma , can be found in the bottom left corner of the keyboard.

A counter will be used to 'count' the quantity of factors. The counter must be set to zero before the counting process begins.

$$
c:=0
$$

Then start a For loop by selecting:
Control > For ... EndFor

The loop will start at 1 and finish at n and use \boldsymbol{i} to count the number of times the loop has been executed.

$$
\text { For } i, 1, \mathrm{n}
$$

An IF statement will be used to check if the user's number has a factor each time the program executes the loop.

The IF command can be selected by:
Control > IF ... THEN ... ENDIF

Between the IF and THEN statement insert the command:

$$
\operatorname{Mod}(\mathrm{n}, i)=0
$$

Note that 'mod' can be typed directly from the keyboard or

$4{ }^{1.1}{ }^{1.2}$ >	
	* factorcount $5 / 7$
	Define factorcount()= Prgm Request "Enter a number $c:=0$ For $i, 1, n$ If $\bmod (n, i)=0$ Then \| EndIf EndFor EndPrgm

Move the cursor into the empty line between THEN and Endlf. This line of code is only executed if $\operatorname{MOD}(n, i)=0$ is true.

Insert the command:

$$
c:=c+1
$$

Create another line between EndFor and EndPrgm
From the I/O menu select Disp and type the command:

```
Disp "Qty Factors", c
```

$4{ }^{1.1}{ }^{1.2}$	
-	* factorcount 8/8
	Define factorcount()=
	Prgm $\mathrm{Request} \mathrm{"Enter} \mathrm{a} \mathrm{number}$
	$c:=0$
	For $i, 1, n$
	$\begin{aligned} & \text { If } \bmod (n, i)=0 \text { Then } \\ & c:=c+1 \end{aligned}$
	Endif
	EndFor
	Disp "Qty Factors: ", cl

Save the program by pressing [Ctrl] + [B] and then transfer focus to the calculator application by pressing [Ctrl] + [Tab].

The program is ready to run!
Press the [VAR] key and select your program.
Do NOT enter the number to be factored into the brackets, press [Enter] and enter the number to be factored when prompted by the request command.

Start by testing the number 18 and check the output with the original table.

Question: 5.

Determine the quantity of factors for each of the following numbers:
a. 24
b. 36
c. 37
d. 144

Check each of your answers by writing down all the factors.

Question: 6.

Determine the quantity of factors for each of the following numbers. Identify a specific characteristic about the quantity of factors and use this to classify the numbers into two groups, explain your classification.
$29,84,104,87,22,37,101,97,45,43,133,153,173,107$

Question: 7.

Determine the quantity of factors for each of the following numbers. Identify a specific characteristic about the quantity of factors and use this to classify the numbers into two groups, explain your classification.
$28,30,90,45,50,60,120,72,25,49,81,144,441,82,24,720$

Question: 8.

The FactorCount program works, but it could be more efficient. Use a stop watch to time how long the program takes to count the number of factors for: 10,000; 20,000 and 30,000. Use these times to predict how long it will take to count the factors for 40,000 . Test your answer!

[^0]: © Texas Instruments 2016. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

