Transformational Geometry Rotations

Student Activity

Transformational Geometry is a way to study geometry by focusing on geometric "movements" or "transformations" and observing/studying properties about these figures.

There are four geometric transformations: < Reflections < Translations < Rotations < Dilations

Play - Investigate - Explore - Discover PIED

In the figure to the right, ΔABC is rotated about point P.

 ΔABC is called the pre-image while $\Delta A'B'C'$ is called the image (of rotation).

 $\Delta A'B'C'$ is read "triangle A prime, B prime, C prime."

Point P is called the point of rotation.

Download and install the red TI-Nspire student software and the Rotations TNS file from the website where you obtained this document.

Then you can interact with these figures, too. If you decide not to download the software, or if you cannot, you can still do this activity along with the <u>videos</u>.

A **conjecture** is an opinion or conclusion based on what is observed.

1. What conjecture(s) can you make based upon what you observed about a triangle and its image after being rotated?

2 a. When a figure is rotated about a point through an angle of positive measure, the figure rotates in a

_____ direction.

b. When a figure is rotated about a point through an angle of negative measure, the figure rotates in a

_____ direction.

3. a) After observing the angle measures being shown, what conjecture can you make?

b) After observing the side measures being shown, what conjecture can you make?

c) Note: do not say all the angles are equal, or do not say all the sides are equal. They aren't. The sides and angles that correspond to one another have equal lengths and measures, respectively.

Name _____ Class

		7	ſ	1
1	J	-	L	9
				r

Transformational Geometry Rotations Student Activity

Name _____ Class _____

d) What is true about the triangles? State that using symbols.

4. a) After observing the perimeters being shown, what conjecture can you make? Why should this be true?

b) After observing the areas being shown, what conjecture can you make? Why should this be true?

5. After observing how triangles have been rotated about a point, you should be able to rotate a triangle about a point through an angle of 90° , or a multiple of 90° . Ideally you will need a compass and straightedge.

- a. Rotate \triangle ABC about point P 90°. Label this image \triangle A'B'C'.
- b. Rotate \triangle ABC about point P 180°. Label this image \triangle A"B"C".
- c. Rotate \triangle ABC about point P 270°. Label this image \triangle A'"B'"C'".

Ų	Transformational Geometry Student Activity	Rotations	Name Class	
6. If yo You wi Conce the sar	u do not have access to a compass, do prob Il need a straightedge (or ruler). ntric circles are circles in the same plane, wi ne center, but different length radii.	olem 5 above usin th	g the figure below.	•••
a.	Rotate ΔABC about point P 90°. Label this image $\Delta A'B'C'$.			····
b.	Rotate ΔABC about point P 180°. Label this image ΔA "B"C".		P	
C.	Rotate ΔABC about point P 270°. Label this image $\Delta A'''B'''C'''$.	****	·····	
7. Bas a. Wha	ed on your explorations and observations: at appears to be true about segments		*****	
PA and	1 PA'? PB and PB'?		PC and PC'	
Why sl (hint: lo	hould these 3 statements be true? bok at the results to either #5 or #6 above)			
8. Grid	s and Coordinates Rotate 90° Complete	the following.		
a) If a	triangle is rotated 90° about the origin, the x	c-coordinate of the	image is the	
	of the	pre-image triang	e.	
b) If a	triangle is rotated $90^{ m o}$ about the origin, the y	v-coordinate of the	image is the	
	of the	pre-image triang	е.	
c) Or in triangle	h symbols, If (x, y) is a point on the pre-imate.	ige, then	is a point on the image	
(<i>x</i> , <i>y</i>)	\rightarrow where ' \rightarrow ' means	'maps to'		

-ij	Transformational Geometry	Rotations	Name
	Student Activity		Class
9. Grid	s and Coordinates Rotate 180° Complete	the following.	
a) If a	riangle is rotated $180^{ m o}$ about the origin, the	x-coordinate of the ima	ge is the
	of the	e pre-image triangle.	
b) If a	riangle is rotated $180^{ m o}$ about the origin, the	y-coordinate of the ima	ge is the
	of the	e pre-image triangle.	
c) Or in triangle	a symbols, If (x, y) is a point on the pre-image.	age, then	is a point on the image
(<i>x</i> , <i>y</i>)	ightarrow where ' $ ightarrow$ ' means	'maps to'	
10. Gri	ds and Coordinates Rotate 270° C	omplete the following.	
a) If a	riangle is rotated 270° about the origin, the	e x-coordinate of the ima	age is the
	of the	e pre-image triangle.	
b) If a	riangle is rotated 270° about the origin, the	e y-coordinate of the ima	age is the
	of the	e pre-image triangle.	
c) Or in triangle	h symbols, If (x, y) is a point on the pre-image.	age, then	is a point on the image
(x, y)	\rightarrow where ' \rightarrow ' means	'maps to'	
11. Gri a) If a ⁻	ds and Coordinates Rotate 360° C criangle is rotated 360° about the origin, the	omplete the following. x-coordinate of the ima	age is the
	of the	e pre-image triangle.	
b) If a	riangle is rotated 360° about the origin, the	y-coordinate of the ima	age is the
	of the	e pre-image triangle.	
c) Or in triangle	h symbols, If (x, y) is a point on the pre-image.	age, then	is a point on the image
(x, y)	ightarrow where ' $ ightarrow$ ' means	'maps to'	

W Transformational Geometry Rotations	Name
Student Activity	Class
12. A rotation of -90° is equivalent to a rotation of what positive a	angle measure?
13. A rotation of -180° is equivalent to a rotation of what positive	e angle measure?
14. A rotation of -270° is equivalent to a rotation of what positive	e angle measure?

Corresponding Sides

We have already shown that corresponding sides of triangle rotated about the origin are equal in length. What else seems to be true about pairs of corresponding sides? Let's explore.

Rotate 90°	$m\left(\overline{AB}\right)$	$m\left(\overline{A'B'}\right)$	$m\left(\overline{BC}\right)$	$m\left(\overline{B'C'}\right)$	$m\left(\overline{AC}\right)$	$m\left(\overline{A'C'}\right)$
# 15						
# 16						
# 17 video						

17. There is an example on the video that we want you to record the slopes of sides into the table on the bottom of the previous page. Pause the video and record the slopes as fractions in simplest form.

18. After completing exercises 15 - 17 and recording the slopes in the table, then do this exercise. a. Look at the slopes of corresponding sides in the table on the previous page. What pattern do you notice?

b. What does that mean is true about lines: \overrightarrow{AB} and $\overrightarrow{A'B'}$? \overrightarrow{BC} and $\overrightarrow{B'C'}$? \overrightarrow{AC} and $\overrightarrow{A'C'}$?

			•
٩		F	P
	•	Y	7

Name	
Class	