Mathematics required:

- domain, range of graphs
- rates of change
- differentiation
- maximum and minimum points of graphs
- symmetry of graphs
- graphs of linear, exponential, quadratic, polynomials and rational functions

Technology required:

- Graphing using $\mathbf{Y}=$ screen
- Finding tangent lines to curves
- Tables of values
- Graph link cable
- Equation editor
- Graphmatica

Part A:

Use the following set of test functions to compare and contrast properties of linear, exponential, quadratic, higherdegree polynomial and rational functions.

- make notes about the tables of values and graphs related to these test functions
- record your observations in a suitable chart (table)
- where appropriate, use technology to aid construction of graphs and their tables of values.

linear	exponential	quadratic	higher-degree polynomial	rational
$f(x)=2 x+3$	$g(x)=3^{x}$	$h(x)=x^{2}+10 x+4$	$k(x)=0.5 x^{3}-6 x$	$m(x)=\frac{8}{x}$
$f(x)=-2 x+3$	$g(x)=(0.3)^{x}$	$h(x)=-x^{2}+10 x+4$	$k(x)=-0.5 x^{3}+6 x$	$m(x)=\frac{8}{x^{2}}$

The following properties should be included:

- rate of change (increasing or decreasing) or constant
- the derivative of each
- symmetry feature (symmetrical about the vertical axis; about the origin; or about a vertical line that is not the vertical axis)
- number of maximum/minimum values (none; one; two; and so on)
- domain and range
- special features (asymptotes; other features that make this family different from any others in the table).

Part B:

For the two quadratic functions of Part A,

- find the gradient function by first principles for $h(x)=x^{2}+10 x+4$
- use the rule of differentiation to find the derivative for $h(x)=x^{2}+10 x+4$ and $h(x)=-x^{2}+10 x+4$.
- by algebra, find the gradient of each curve at (i) the vertex; (ii) at two x values equally spaced either side of the vertex. Check this using the TI-92. What property of the parabola does this demonstrate?
- use the TI-92 to find the equation of the tangent at these points.
- summarise your results in a table.

