What's So Special about 11?

Overview

Students will compute multiples of numbers in search of patterns. As a class, they'll discover patterns in multiples of 9 ; then they'll do the same with patterns in multiples of 11. They will then practice writing the rule for 11 , both verbally and algebraically, to summarize the discovered pattern.

Math Concepts

- patterns
- problem solving

Materials

- TI-30XS MultiView ${ }^{\text {TM }}$
- calculator
- pencil
- paper

Activity

Begin with a discussion about patterns in numbers.
Much of what happens in math is based on patterns. Often, we are told the patterns. It is more interesting and more beneficial, though, to discover those patterns ourselves.

Begin by talking about multiples of 9 .
Here's a pattern that might be familiar to you. Do you know any procedures or patterns to help you remember multiples of 9 ?

There are certain answers to expect. One is "to multiply 9 by 3 , hold up your hands and put the third digit from the left down. There are two fingers to the left and seven digits to the right; hence $9(3)=27$." Another is "the answer will add to 9 , so $9 \cdot 7=63$ because you start with the digit one less than 7, then make the sum 9."

But what about two-digit numbers?

$9 \cdot 11$	$=99$	
$9 \cdot 12$	$=108$	
$9 \cdot 13$	$=117$	
$9 \cdot 14$	$=126$	
$9 \cdot 15$	$=135$	
$9 \cdot 57$	$=513$	

Have students give you answers using mental math or through use of patterns. The third column of the table is for recording their suggested patterns.

Do you see any pattern? Explain.

What's So Special about 11?

Now, begin to explore using the calculator.
Since we're going to check many multiples of 9, it makes sense to use the constant feature of the TI-30XS MultiView, rather than to enter each line individually.

In addition to the patterns students suggested, share this: Each answer is 10 times the factor, minus that factor.

Notice that 12(9) is the same as 12(10)-12.
And 13(9) is the same as 13(10) - 13.
And 57(9) is the same as 57(10) - 57.
Using that pattern, can you calculate 77(9) without a calculator? How about 91(9)?

Students may still need direction, but the pattern should begin to emerge for them.

I believe that 77(9) is the same as 77(10) - 77, which is $770-77$, which is 693 . Let's check.

In addition to the constant feature, we can also use the cursor to copy an entry from history, paste it, and simply edit to fit our needs. This is a huge time-saver, and it allows us to use fewer keystrokes.

Point out any other patterns, such as the fact that the sum of all digits of any multiple of 9 will be a factor of 9 . For instance, $77(9)=693$, and if you add $6+9+3$, you get 18 , which is a multiple of 9 , also. This is always true.

In summary, since any two-digit number multiplied by 9 is equal to 10 times that number, minus the number, we can express that algebraically as $9 x=10 x-x$ for any two-digit x.

Follow these steps:

1. Press $\% \lambda$ to access the constant feature.
2. Delete any operation currently stored, and press $\varsigma 9<$.
3. Press $\% \Theta$.
4. Notice the small K at the top of the screen:

5. Now press $11<12<$, etc.

$11 * 9^{k}$	DeG
$12+99$	
$13 * 9$	108

6. Press $\% \lambda \square$ to quitconstant mode.

Follow these steps:

1. With λ set up as $\varsigma 9$, press $77<$.
2. Turn off $\lambda \square$ by pressing $\% \lambda$.
3. Press $77 \Delta 10 \mathrm{E} \mathrm{Y} 77<$.
4. The calculator should display this:

5. Pressing \#\#\#\# < allows you to copy $77 \Delta 9 \mathrm{E}$ and pull it down for editing.
6. Press $\forall \forall \forall \forall$, type 91 over the 77 , then press $<$.
7. Press \# \# \# \# <again to copy 77 $\Delta 10$ E Y 77 and pull it down.
8. Type 91 over the 77 both times, and press <.
9. The calculator should display this:

What's So Special about 11?

\qquad

1. Compute by hand:
11(1) = \qquad 11(5) = \qquad 11(9) = \qquad
$11(2)=$ \qquad
11(6) = \qquad $11(10)=$ \qquad
11(3) = \qquad
11(7) $=$ \qquad 11(11) $=$ \qquad
11(4) $=$ \qquad
11(8) $=$ \qquad
$11(12)=$ \qquad
2. Summarize any pattern you see when multiplying 11 by a single-digit number.
\qquad
\qquad
\qquad
3. Express that pattern as an algebraic equation. \qquad
4. Use your TI-30XS MultiView ${ }^{\text {TM }}$ to multiply 11 by several two-digit numbers; then record a possible pattern. Record your results in the chart below. The first one has been done for you as an example.

$11 \cdot 11$	$=121$	$10 \cdot 11+11$
$11 \cdot 12$	$=$	
$11 \cdot 13$	$=$	
$11 \cdot 14$	$=$	
$11 \cdot 15$	$=$	

5. Can you find $11 \cdot 42$ from your pattern? \qquad What about $11 \cdot 72$? \qquad
6. Summarize any pattern you see when multiplying 11 by a two-digit number.
\qquad
\qquad
\qquad
7. Express that pattern as an algebraic equation. For any two-digit number $x, 11 \cdot x=$ \qquad .
8. Based on your answers above, what do you think happens when you multiply a three-digit number by 111? Explain. \qquad

Answer Key

1. Compute by hand:

$$
\begin{array}{lll}
11(1)=11 & 11(5)=55 & 11(9)=99 \\
11(2)=22 & 11(6)=66 & 11(10)=110 \\
11(3)=33 & 11(7)=77 & 11(11)=121 \\
11(4)=44 & 11(8)=88 & 11(12)=132
\end{array}
$$

2. Summarize any pattern you see when multiplying 11 by a single-digit number.

Each number you multiply by 11 is 10 times that number, plus the number again. For instance, $11(8)=10(8)+8=80+8=88$.
3. Express that pattern as an algebraic equation. $11 x=10 x+x$
4. Use your TI-30XS MultiView ${ }^{\text {TM }}$ to multiply 11 by several two-digit numbers; then record a possible pattern. Record your results in the chart below. The first one has been done for you as an example.

$11 \cdot 11$	$=121$	$10 \cdot 11+11$
$11 \cdot 12$	$=132$	$10 \cdot 12+12$
$11 \cdot 13$	$=143$	$10 \cdot 13+13$
$11 \cdot 14$	$=154$	$10 \cdot 14+14$
$11 \cdot 15$	$=165$	$10 \cdot 15+15$

5. Can you find $11 \cdot 42$ from your pattern? 462 What about $11 \cdot 72$? 792
6. Summarize any pattern you see when multiplying 11 by a two-digit number.

The pattern is the same as for a one-digit number. So when multiplying a two-digit number by 11 , it's the same as multiplying that number by 10 , then adding the number. For instance, 11(42) = $10(42)+42=420+42=462$.
7. Express that pattern as an algebraic equation. For any two-digit number $x, 11 \cdot x=10 x+x$.
8. Based on your answers above, what do you think happens when you multiply a three-digit number by 111? Explain.

Answers will vary, but the pattern continues similar to before-111 times a two-digit number is 100 times that number +10 times that number + the number.

