Quadratic Relations Test 3A

Name
Answers

Student

25 min

Question: 1

The equation $(x-3)^{2}+a=0$ has roots: $x=1$ and $x=b$, the values of a and b are therefore:
a) $\quad a=1$ and $b=3$
b) $\quad a=0$ and $b=3$
c) $\quad a=2$ and $b=5$
d) $\quad a=-2$ and $b=5$
e) $\quad a=-4$ and $b=5$

Question: 2

The factorised form of $y=(x-4)^{2}-9$ is:
a) $(x-2)(x-3)$
b) $(x+1)(x-7)$
c) $(x-1)(x-7)$
d) $(x+1)(x-7)$
e) $(x-1)(x+9)$

Question: 3

The range of values of b such that $y=x^{2}+b x+16$ has two distinct roots is:
a) $b>8$
b) $\quad|b|>8$
c) $b \geq 8$
d) $b \geq \pm 8$
e) $b \in R$

Question: 4
Which one of the following would result in irrational roots for $x^{2}+6 x+c=0$
a) $c=0$
b) $c=9$
c) $c=-27$
d) $c=-91$
e) $c=-9$

Question: 5
The equation: $p x^{2}+(p+q) x+q=0$ has rational roots when:
a) $p=2$ and $q=3$
b) $p=-2$ and $q=3$
c) $p=\frac{2}{3} \quad$ and $q=\frac{1}{2}$
d) $p=-2$ and $q=-3$
e) All of the above

Question: 6

The red rectangle is bound by triangle ABC . An expression for the area of the rectangle could be:
a) Area $=(12-x)(10-x)$
b) \quad Area $=x(10-x)$
c) Area $=x(12-x)$
d) Area $=\frac{6}{5} x(10-x)$
e) Area $=\frac{5}{6} x(12-x)$

Question: 7

Given that $4 x^{2}+a x+b=0$ has one unique root and $a+b=21$ the values of a and b could be:
a) $\quad a=4$ and $b=17$
b) $\quad a=-28$ and $b=49$ OR $a=12$ and $b=9$
c) $\quad a=-28$ and $b=49$ only
d) $\quad a=12$ and $b=9$ only
e) $\quad a=-4$ and $b=25$

Question: 8

Two consecutive positive integers are squared and added together, the result is 1105. The smaller of the two consecutive numbers is therefore:

$$
\begin{aligned}
n^{2}+(n+1)^{2} & =1105 \\
2 n^{2}+2 n-1104 & =0 \quad \text { The smaller number of the two (positive) integers is therefore } 23 . \\
2(n-23)(n+24) & =0 \\
n & =23
\end{aligned}
$$

Question: 9

A right angled triangle has hypotenuse of length 29 . The two shorter sides differ by just one unit.
The shortest side is therefore equal to:

$$
n^{2}+(n+1)^{2}=29^{2}
$$

$2(n-20)(n+21)=0 \quad$ The smaller number of the two sides is therefore 20 .

$$
n=20
$$

Question: 10
Forty metres of fencing is available to form a paddock that is bound on one side by a creek. Write an expression for the area of the paddock.

$$
\text { Area }=x(40-2 x)
$$

[^0]
[^0]: (C) Texas Instruments 2019. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

