\qquad

Open the TI-Nspire document Area_Function_Problems.tns.

Objective: To extend the understanding of the relationship between the area under a derivative curve and the antiderivative function.

Directions: For each problem, drag the empty circle on the x-axis and watch point P move across the graph. Next, move to page 2 of the problem and use $\mathbf{f} 2(x)$ to type the function you think point P is modeling. Determine if your function matches the scatter plot of the area function.

CALCULUS

Area Function Problems
In this lesson, students will see a point that represents (x, area under a curve). Students can predict what equation represents the area function and confirm their prediction with a scatter plot of the graph.

Move to page 2.1.

Record your antiderivative function for each problem.

Press (ctr) and ©tri) \langle to
navigate through the lesson.

Problem 2:

Problem 3:

Problem 4:

Problem 5:

Problem 6:

Problem 7:

Problem 8:

Name

Use the results from the activity to answer the questions.

1. What is the antiderivative function of $\mathbf{f}(x)=-2$?
2. What is the antiderivative function of $\mathbf{f}(x)=k$?
3. What is the antiderivative function of $\mathbf{f}(x)=m x+b$?
4. What is the difference between the antiderivative function of problem 4 and that of problem 6?
5. Why is the area negative when the left endpoint is in the first quadrant?
6. When does moving the left endpoint further to the left make the total area positive?
7. What is the difference between the antiderivative function of problem 6 and that of problem 8?
