by

Mary Ann Connors
Department of Mathematics
Westfield State College
Westfield, MA 01086

Textbook Correlation: Key Topic

- Pre-Requisites: Functions and Equations
- Limits

NCTM Principles and Standards:

- Process Standard
- Representation
- Connections

Exercises:

1. Investigate the vertical asymptotes of $f(x)=\frac{x^{2}-7 x+12}{x^{2}-4}$ graphically, numerically and symbolically.

Solution:

A. Graphical Analysis:

Why does a "vertical" lines appear when you use an xres value of 4? Using the Trace feature will help you figure it out.

B. Numerical Analysis:

C. Symbolic Analysis (Limit of a function $\mathrm{f}(x)$ as \boldsymbol{x} approaches an arbitrary constant, c $\left[\lim _{x \rightarrow c} f(x)\right]$):
Evaluate limits that show the vertical asymptotes ($x=2$ and $x=-2$). Recall that after the limiting value you need to type a comma and a positive number for a right hand limit or a negative number for a left-hand limit.

2. Investigate the horizontal asymptotes of $f(x)=\frac{x^{2}-7 x+12}{x^{2}-4}$ graphically, numerically and symbolically.

Solution:

A. Graphical Analysis:

Same as in Exercise 1.

B. Numerical Analysis:

You can adjust the cell width for the table by using F1(Tools), 9:Format.

Apparent limit as \boldsymbol{x} increases without bound

Apparent limit as \boldsymbol{x} decreases without bound
C. Symbolic Analysis (Limit of a function $\mathrm{f}(x)$ as x approaches infinity, $\left[\lim _{x \rightarrow \infty} f(x)\right]$):

Solve for the horizontal asymptote $(y=1)$ on the Home screen. Press ,CATALOG for the infinity symbol (∞).

Additional Exercise: Investigate all asymptotes and the end behavior of $f(x)=\frac{x^{2}-2 x-1}{x-1}$ graphically, numerically, and symbolically using limits.

