Holt Physics Chapter 11 Pendulum Activity Sheet

In this graphing calculator activity, you will enter the period (T) of a pendulum on Earth. The calculator will determine L, the length of the pendulum, from the following equation:

$$
\mathrm{L}=\left(9.81 \mathrm{~T}^{2}\right) /\left(4 \pi^{2}\right)
$$

Using this length, the calculator will display a graph showing how the period of this pendulum $\left(\mathrm{Y}_{1}\right)$ changes with changes in the free-fall acceleration (X), as given by the following equation:

$$
\mathrm{Y}_{1}=2 \pi \sqrt{(\mathrm{~L} / \mathrm{X})}
$$

From this graph, you will be able to calculate the period of a pendulum on different planets, which have different values for free-fall acceleration.

Download the VIB program to your TI-83/84 calculator. Press PRGM, then scroll down to VIB by pressing \square. Press ENTER twice to start the program. Enter the value for the period on Earth (see below). The calculator will produce a graph of period vs. free-fall acceleration. Use TRACE to determine the period on different planets (see below). Press 2nd [QUIT] to stop viewing the graph. Press ENTER to restart the program.
a. Why does the number 9.81 appear in the equation for L given above?
b. Calculate the periods of oscillation on different planets for two pendulums: one with a period of 2.0 s on Earth and the other with a period of 6.0 s on Earth.

Earth $\left(g=9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$	Mars $\left(\mathrm{g}=3.71 \mathrm{~m} / \mathrm{s}^{2}\right)$	Venus $\left(\mathrm{g}=8.78 \mathrm{~m} / \mathrm{s}^{2}\right)$	Neptune $\left(\mathrm{g}=11.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
2.0 s			
6.0 s			

c. The period of a pendulum \qquad (increases, decreases, remains the same) as the free-fall acceleration increases.
d. The ratio on the periods of two pendulums \qquad (increases, decreases, remains the same) as the free-fall acceleration increases.
e. The length of the pendulum with period 6.00 s is \qquad (longer than, shorter than, the same as) the length of the pendulum with period 2.00 s .

Holt Physics Chapter 11 Pendulum Activity Sheet

ANSWER KEY

a. Why does the number 9.81 appear in the equation for L given above? This is the free-fall acceleration constant on Earth, $9.81 \mathrm{~m} / \mathrm{s}^{2}$.
b. Calculate the periods of oscillation on different planets for two pendulums: one with a period of 2.00 s on Earth and the other with a period of 6.00 s on Earth.

Earth $\left(\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$	Mars $\left(\mathrm{g}=3.71 \mathrm{~m} / \mathrm{s}^{2}\right)$	Venus $\left(\mathrm{g}=8.78 \mathrm{~m} / \mathrm{s}^{2}\right)$	Neptune $\left(\mathrm{g}=11.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
2.00 s	3.25 s	2.11 s	1.82 s
6.00 s	9.76 s	6.34 s	5.47 s

c. The period of a pendulum \qquad (increases, decreases, remains the same) as the free-fall acceleration increases.
decreases
d. The ratio on the periods of two pendulums \qquad (increases, decreases, remains the same) as the free-fall acceleration increases.
remains the same
e. The length of the pendulum with period 6.00 s is \qquad (longer than, shorter than, the same as) the length of the pendulum with period 2.00 s .
longer than

