Materials

- TI-Nspire Math and Science Learning Handheld
- Investigating Triangles and Congruence worksheet

Introduction

The following activity allows you to investigate triangles and congruence.

In this activity we will use the TI-Nspire handheld to show that if two sides and a nonincluded angle of one triangle are congruent to two sides and a nonincluded angle of another triangle, the triangles are not necessarily congruent.

CONSTRUCT

Follow the following steps below to construct $\triangle \mathrm{ABG}$ and $\triangle \mathrm{ABH}$.

1. Draw a segment and label it segment AB.
(Follow the steps given next page)

\section*{| 1.1 | 1.2 | 1.3 | 1.4 | DEG AUTO REAL |
| :--- | :--- | :--- | :--- | :--- |}

Investigating

Triangles and Congruence
You can use TI-Nspire Handheld to show that if two sides and a nonincluded angle of one triangle are congruent to two sides and a nonincluded angle of another triangle, the triangles are not necessarily congruent.

Figure 1

Figure 2

- Press $(\mathbb{\pi})$ then choose 2: Graphs \& Geometry (Figure3\& 4).
- Press (nenm Choose 2 View, 1)Hide Axes and press (menv) 2 (3)Hide Entry Line. This will allow you to have a blank screen. (Figure 5 \& 6)

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8
2. Draw another point not on segment AB . Label this point E and draw line AE .

- Press - choose 6: Points \& Lines - 4: Line (Figure 9).

Figure 9

Figure 10

Figure 11

- Press (ment \langle 1 2 Hide/Show then
 the circle until it starts blinking then press to hide the circle (Figures $14 \& 15$).

Figure 12

Figure 13

Figure 14

INVESTIGATE

1．Measure the lengths of segments AB ， BH，BG，AG，and AH．
－Press menn 1 Text，to create a text box．Type $\mathrm{AB}=$＝⿻上丨ine and repeat this for each one of the segments（Figure 16）．

Figure 16

Figure 17
2. Measure $\angle \mathrm{ABG}, \angle \mathrm{BAG}, \angle \mathrm{AGB}$, $\angle \mathrm{ABH}, \angle \mathrm{BAH}$, and $\angle \mathrm{AHB}$.

- To achieve this goal repeat the process as above except use angles instead of lengths.

3. Name the sides of $\triangle \mathrm{ABG}$ that are congruent to the sides of $\triangle \mathrm{ABH}$.
4. Name the angles of $\triangle \mathrm{ABG}$ that are congruent to the angles of $\triangle \mathrm{ABH}$.

Figure 18

Figure 19

Figure 20
5. Explain why the following conjecture is false.

If two sides and a nonincluded angle of one triangle are congruent to two sides and a nonincluded angle of the other triangle, then the triangles are congruent.

1.12	1.13	1.14	1.15
Question			
5.Explain why false.			
If two sides and a nonincluded angle of one			
triangle are congruent to two sides and a			
nonincluded angle of the other triangle,			
then the triangles are congruent.			

| 1.13 | 1.14 | 1.15 | 1.16 |
| :--- | :--- | :--- | :--- | :--- |
| DEG AUTO REAL | | | | Question

CRITICAL THINKING
If you know that three angles of one triangle are congruent to three angles of another triangle, can you prove that the triangles are congruent? In other words, is there an Angle-Angle-Angle Congruence Postulate or Theorem?

Figure 22

