Activity 12

What is the Number "e"

Answers to Instructions: Part A
2. $\int f(x) d x=1.38629$
3. $b=2.7$
4. $F(0)=0$

$$
\begin{aligned}
& F(x)=\int_{0}^{x} \sqrt[3]{t^{2}+\cos (t)} \cdot d t \\
& F^{\prime}(x)=\sqrt[3]{x^{2}+\cos (x)} \\
& F^{\prime}(\pi / 4)=\sqrt[3]{\pi^{2}+\frac{\sqrt{2}}{2}}
\end{aligned}
$$

7. $(x, y)=(1,0)$ The value of any integral from 1 to 1 is zero.
8. 2.718

Teacher Information (Continued)

Activity 12

What is the Number "e"

(Continued)

Answers to Instructions: Part A

11. $\frac{d}{d x} \ln (x)=\frac{1}{x}$
$\frac{d}{d x} \operatorname{myst}(x)=\frac{1}{x}$
$\operatorname{myst}(x)=\ln (x)$

Answers to Part A—Extra Practice

1. $f(0)=0, f(1)=1.11145, g(0)=-1.11145, g(1)=0$
2. $f^{\prime}(x)=\sqrt{x^{3}+1}$ and $g^{\prime}(x)=\sqrt{x^{3}+1}$
3. They differ by a constant, $\int_{0}^{1} \sqrt{x^{3}+1} \cdot d x=1.11145$
4. $f^{\prime \prime}(x)=\frac{3 \cdot x^{2}}{2 \cdot \sqrt{x^{3}+1}}$
5. $u=2 \cdot x \Rightarrow f(u)=\int_{0}^{2 \cdot x} \sqrt{t^{3}+1} \cdot d t$ and
$\frac{d}{d x} f(u)=\int_{0}^{2 \cdot x} \sqrt{t^{3}+1} \cdot d t=\sqrt{8 \cdot x^{3}+1}$

$u(x)$	$f(u)$	$\frac{d f(u)}{d x}$
$u=x^{2}$	$\int_{0}^{x^{2}} \sqrt{t^{3}+1} \cdot d t$	$2 \cdot x \cdot \sqrt{x^{6}+1}$
$u=x^{3}$	$\int_{0}^{x^{3}} \sqrt{t^{3}+1} \cdot d t$	$3 \cdot x^{2} \cdot \sqrt{x^{9}+1}$
$u=e^{x}$	$\int_{0}^{e^{x}} \sqrt{t^{3}+1} \cdot d t$	$e^{x} \cdot \sqrt{e^{3 \cdot x}+1}$
$u=\sin (x)$	$\int_{0}^{\sin (x)} \sqrt{t^{3}+1} \cdot d t$	$\cos (x) \cdot \sqrt{\sin ^{3}(x)+1}$

$\frac{d}{d x}\left(\int_{0}^{u(x)} \sqrt{t^{3}+1} \cdot d t\right)=u^{\prime}(x) \cdot \sqrt{(u(x))^{3}}+1$
6. $\frac{d}{d x}\left(\int_{a}^{u(x)} g(t) \cdot d t\right)=g(u(x)) \cdot u^{\prime}(x)$

Teacher Information (Continued)

Activity 12
 What is the Number "e"

(Continued)
Answers to Part B-Extra Practice

1. Let $y=$ the number of bacteria after t hours.

Then $\frac{d y}{d t}=0.082 * y$.
Separate the variables: $\frac{d y}{y}=0.082 * d t$
Integrate both sides of the equation:
$\ln (|y|)=0.082 * t+k$
Solve the resulting equation for y given $y>0$: $y=e^{082 t+k}$
Solve for k, given that $y=100$ when $t=0$: $k=2 * \ln (10)$.

Define $k=2 \ln (10)$. The growth equation is $y=100 *(1.08546)^{t}$

Solve for t when $y=10000, t=56.1606$. The bacteria will increase from 100 to 10000 in 56.16 hours.
2. Let $y=$ the percentage of Carbon $14 t$ years from now, then $\frac{d y}{d t}=r * y$
Separate the variables $\frac{d y}{y}=r * d t$
Integrate both sides of the equation:
$\ln (|y|)=r * t+k$
Solve the resulting equation for y given $y>0$:
$y=e^{r * 1+k}$
Solve for k given $y=4.7$ when $t=0: k=1.54756$.
Define $k=1.54756$.
Solve for r given $y=9.4$ when $t=-5700$.
$r=-.000122$.
Define $r=-.000122$.
The exponential decay equation is: $y=4.7 *(.999878)^{t}$
Take the natural logarithm of both sides of the equation: $\ln (y)=-.000122 * t+1.54756$
Solve this logarithmic equation for t given $y=100$: $t=-25143.8$

The campsite is approximately 25,000 years old.

