Polar Conics Student Activity

Open the TI-Nspire document Polar_Conics.tns.

In this activity, you will explore how to express an ellipse, a hyperbola, and a parabola from a single equation and investigate the different parameters of the equation.

A conic is defined as the locus of points in a plane whose distance from a fixed point (focus) and a fixed line (directrix) is a constant ratio. This ratio is called the eccentricity, e, of the conic. The polar notation for the ellipse, hyperbola, and parabola is given by the equation:

$$r = \frac{ed}{1 \pm e\cos(\theta)}$$
 OR $r = \frac{ed}{1 \pm e\sin(\theta)}$

where *e* is the eccentricity and *d* is the distance from the origin to the directrix.

By expressing the equation in polar coordinates, we can generate all three types of conics from a single equation.

Move to page 1.2.

1.	Use the clicker to change the values of the eccentricity, e. For what values of e is the conic a
	parabola? An ellipse? A hyperbola?

Move to page 2.2.

- 2. Use the clicker to change the values of d, the distance between a point on the conic and the directrix.
 - a. Set e = 1. When the conic is a parabola, what effect does d have on the graph of the function?
 - b. Set e < 1. When the conic is an ellipse, what effect does d have on the graph of the function?
 - c. When the conic is a hyperbola, what effect does d have on the graph of the function?

Name Class

PreCalculus

Polar Conics

Use the clickers to change the values of the parameters and observe the change in the graph of the conic.

Press ctrl > and ctrl < to

navigate through the lesson.

1

- 3. Adjust the parameters to create an ellipse that is 9 units in width, and make a note of those parameters. Are these the only parameters that will create such an ellipse? Explain.
- 4. Adjust the parameters to create a hyperbola for which the vertices of the branches are 6 units apart, and make a note of those parameters. Are these the only parameters that will create such a hyperbola? Explain.

Move to page 3.2.

- 5. Use the clicker to adjust the value of *a*, the phase shift.
 - a. Set e = 1. When the conic is a parabola, what effect does a have on the graph of the function?
 - b. Set *e* < 1. When the conic is an ellipse, what effect does *a* have on the graph of the function?
 - c. Set *e* > 1. When the conic is a hyperbola, what effect does *a* have on the graph of the function?
- 6. Is it possible to adjust the values of *a* and *e* so that the resulting conic is a parabola centered about the y-axis? If so, what parameters yield this result? If not, explain why not.
- 7. Which type of conic will result from each of the following equations? How do you know?

a.
$$r = \frac{1+3\cos(\theta-5)}{1+3\cos(\theta-5)}$$

b. $r = \frac{3}{1-\cos(\theta-6)}$
c. $r = \frac{20}{1-0.5\cos(\theta-2)}$