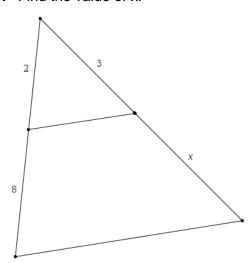
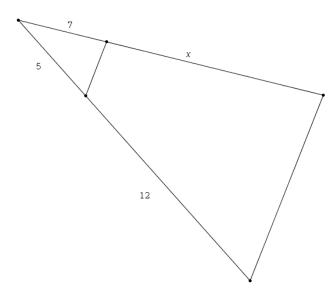
Problem 1 – Side Splitter Theorem

On page 1.3, you are given $\triangle CAR$. You are also given \overline{DS} which is parallel to side CR.


1. Move point *D* to 2 different positions and point *A* to 2 different positions and collect the data in the table below. Calculate the ratios of *AD* to *DC* and *AS* to *SR* for each position and record the calculation in the table below.

Position	AD	DC	AS	SR	AD DC	AS SR
1						
2						
3						
4						


- **2.** Make some observations about the ratios of the sides in the triangle. What relationships do you notice?
- 3. Use the table to complete the following conjecture about the relationship between $\frac{AD}{DC}$ and $\frac{AS}{SR}$. If side *DS* is parallel to side *CR*, then ______.
- **4.** On page 1.7, drag point *A*. Make some observations about the relationship of the ratios $\frac{AD}{DC}$ and $\frac{AS}{SR}$?
- **5.** On page 1.7, drag point *D*. Make some observations about the relationship of the ratios $\frac{AD}{DC}$ and $\frac{AS}{SR}$?
- **6.** Why are the results different when moving point *A* versus moving point *D*?

Problem 2 – Application of the Side-Splitter Theorem

7. Find the value of x.

8. Find the value of x.

Problem 3 - Extension of the Side-Splitter Theorem

For this problem, we will look at a corollary of the side-splitter theorem.

9. Move point *U* to 2 different positions and point *N* to 2 different positions and collect the data in the table on the accompanying worksheet.

Position	RN	NO	EA	AS	$\frac{RN}{NO}$	EA AS
1						
2						
3						
4						

- **10.** What do you notice about the ratios $\frac{RN}{NO}$ and $\frac{EA}{AS}$?
- **11.** Use the table to complete the following conjecture about the relationship between $\frac{RN}{NO}$ and

 $\frac{EA}{AS}$. If lines RE, NA, and OS are parallel and cut by two transversals, then