\qquad
\qquad

Problem 1 - Side Splitter Theorem

On page 1.3, you are given $\triangle C A R$. You are also given $\overline{D S}$ which is parallel to side $C R$.

1. Move point D to 2 different positions and point A to 2 different positions and collect the data in the table below. Calculate the ratios of $A D$ to $D C$ and $A S$ to $S R$ for each position and record the calculation in the table below.

Position	$A D$	$D C$	$A S$	$S R$	$\frac{A D}{D C}$	$\frac{A S}{S R}$
1						
2						
3						
4						

2. Make some observations about the ratios of the sides in the triangle. What relationships do you notice?
3. Use the table to complete the following conjecture about the relationship between $\frac{A D}{D C}$ and $\frac{A S}{S R}$. If side $D S$ is parallel to side $C R$, then \qquad .
4. On page 1.7, drag point A. Make some observations about the relationship of the ratios $\frac{A D}{D C}$ and $\frac{A S}{S R}$?
5. On page 1.7, drag point D. Make some observations about the relationship of the ratios $\frac{A D}{D C}$ and $\frac{A S}{S R}$?
6. Why are the results different when moving point A versus moving point D ?

Side-Splitter Theorem

Problem 2 - Application of the Side-Splitter Theorem

7. Find the value of x.
8. Find the value of x.

Problem 3 - Extension of the Side-Splitter Theorem
For this problem, we will look at a corollary of the side-splitter theorem.
9. Move point U to 2 different positions and point N to 2 different positions and collect the data in the table on the accompanying worksheet.

Position	RN	NO	EA	AS	$\frac{R N}{N O}$	$\frac{E A}{A S}$
1						
2						
3						
4						

10. What do you notice about the ratios $\frac{R N}{N O}$ and $\frac{E A}{A S}$?
11. Use the table to complete the following conjecture about the relationship between $\frac{R N}{N O}$ and $\frac{E A}{A S}$. If lines RE, NA, and OS are parallel and cut by two transversals, then
\qquad .
