\qquad
\qquad

Problem 1 －Chirps in 15 Seconds vs．Temperature

When looking at data，it is often difficult to see a relationship．However，when the data is plotted，a trend becomes clear．While real data rarely matches an equation perfectly，a line of best fit can be plotted to make predictions for future values．

Step 1：Run the program SCATTER and choose the first option 1：CHIRPS．

Look at the data of temperature，L1，（in ${ }^{\circ} \mathrm{F}$ ） and the number of cricket chirps in 15 seconds，L2，in the Stat Editor by pressing STAT ENTER．

L1	L2	L3	1
\％	20	－－－－－－	
昭	818		
旦	17		
55	15		
晈	17		
L1（1）$=89$			

－Is it easy to see a relationship between chirps and temperature by only looking at the data？ Why or why not？

Step 2：Sometimes it is easier to see a relationship by observing a scatter plot of the data．To create a scatter plot，press 2nd［STAT PLOT］ENTER and match the screen to the right．
Now press ZOOM and select ZoomStat to observe the scatter plot．

Step 3：To manually draw a line of best fit，press 2nd ［DRAW］and select Line（．
A cursor will appear in the middle of the screen．Use the arrow keys to place the first point near the start of the data．Press ENTER and record the coordinates to the nearest whole number below．

Point 1：x ： \qquad $y:$ \qquad

Move your cursor to the end of the data．Press ENTER and record these coordinates．
Point 2：x ： \qquad $y:$ \qquad
The line should pass between most of the data．

Chirp, Jump, Scatter

- On the Home screen, use Points 1 and 2 to write an equation for your line.

Step 4: Press γ Y and enter your equation next to \mathbf{Y}_{1}. Press GRAPH to verify that it passes through the data.

- Using the equation of your line of best fit, predict the number of chirps in 15 seconds you would expect to hear if the temperature was $100^{\circ} \mathrm{F}$. How many chirps for $55^{\circ} \mathrm{F}$?

Problem 2 - Olympic High Jump

Step 5: Run the program SCATTER and choose the second option 2: HIGH JUMP.

Look at the data of years, $\mathbf{L 1}$, and the winning men's Olympic high jump height, L2, in the Stat Editor.

L1	L2	LS	1
[170]	1.725	------	
19 O	1.905		
19	1.935		
$19{ }^{194}$	1.94		
1932	1.97		
L10 $=1906$			

- By only looking at the data of high jump height for each year, can you see a general trend? Why or why not?

Step 6: Repeat the procedure for putting in a manual line of best fit as before.

Point 1: x : \qquad y : \qquad
Point 2: x : \qquad y : \qquad

```DNTN FOINTS STO 1:C1rDr:aw 2#L\mp@code{\!} 3:Hor-izontal 4: wertical 5: Tangentc 6: Dr:awF 7+Shadec```

## Chirp, Jump, Scatter

- What is the equation of your line?
- Use this equation to predict the height of the high jump for the 2012 Olympics.
- Looking back at the data since 1988, does your prediction for the 2012 games seem realistic and reasonable? Why or why not?


## Problem 3 - Brain Size and IQ

Step 8: Run the program SCATTER and choose the third option 3: BRAIN SIZE.

Look at the data of IQ, L1, and the brain size, L2, in the Stat Editor.

Step 9: Create the scatter plot.

L1	L2	L3	1
124	日16932	------	
124	${ }^{156}$		
${ }_{1}^{150}$	1.04E6		
134	95155		
110			
(1)			

- By looking at the graph of Brain Size vs. IQ, does there appear to be a relationship between brain size and IQ? Change the variables on the axis. Does a relationship appear?


## Extension

Problem 1 - Women's Olympic Discus Throw
Run the program SCATTER and choose the fourth option 4: DISCUS. Look at the data of years, L1, and the distance of the discus throw, L2, in the Stat Editor.

- Find the equation of the line of best fit. Make a prediction for a future Olympic year and discuss its reasonableness.


## Chirp, Jump, Scatter

Problem 2 - How many handshakes?
Below is a diagram of 3 and then 4 people in the room. If each person were to shake hands with every other person, how many handshakes would there be?


- Draw below what this would look like if there were 5 people in the room. How many handshakes would there be, if there were 6 people?

Using the graphing calculator, store the number of people in L1 and the number of handshakes in L2.

- After creating the scatter plot, does this data look linear? What is the shape of this graph?

