Application of Completing the Square TIMath.сом: Algebra 2

Teacher Notes

Math Objectives

- Students will recognize the characteristics of a perfect square quadratic.
- Students will use the characteristics of a perfect square quadratic to complete the square.
- Students will apply knowledge of perfect square quadratics to solve real-world problems.

Vocabulary

- perfect square quadratic
- coefficient
- constant term
- polynomial

About the Lesson

- This lesson is a follow-up lesson to the activity Completing the Square.
- This lesson involves students calculating a square area that involves perfect square quadratics.

Related Lessons

- Prior to this lesson: Completing the Square
- After this lesson: More Systems of Inequalities

Suppose you have been asked to write a computer program for a company that manufactures two different kinds of napkins, dinner napkins and cocktail napkins. The purpose of the program is to calculate the area of the decorative portion of the napkin.

TI-Nspire ${ }^{\text {TM }}$ Technology Skills:

- Download TI-Nspire document
- Open a document
- Move between pages
- Use a slider
- Find area of a polygon

Tech Tips:

- Make sure the font size on your

TI-Nspire handhelds is set to Medium.

Lesson Materials:

Student Activity
Application_of_Completing_the_ Square_Student.PDF
Application_of_Completing_the
Square_Student.DOC
TI-Nspire document
Application_of_Completing_ the_Square.tns

Application of Completing the Square

Teacher Notes

Discussion Points and Possible Answers:

TI-Nspire Problem/Pages 1.4 and 2.2

Tech Tip: Press esc to hide the entry line if students accidentally click the chevron.

1. What will be the shape of the dinner napkin after the border is added? Explain.
2. Find the area of the white part of the napkin (without the border). What formula did you use?
$A=s^{2}$ to find the area of the entire napkin (including border). Use the labels from the picture on page 1.4.
3. Expand your formula from

Question 3. Show your work below.
5. Question 4 resulted in what type of polynomial? Explain.

Use the area of a square formula.
$A=s^{2}$
$A=15^{2}$
$A=225 \mathrm{~cm}^{2}$
$A=(15+x)^{2}$
The shape of the napkin including the border will be a square, since the same value, x, is added to both sides of the square.
(
$A=(15+x)^{2}$
$A=(15+x)(15+x)$
$A=225+30 x+x^{2} \quad$ or $\quad A=x^{2}+30 x+225$

Question 4 resulted in a perfect square quadratic, since half of the coefficient of the x-term squared equals 225.

$$
\begin{aligned}
& \frac{1}{2} \cdot 30=15 \\
& 15^{2}=225
\end{aligned}
$$

Application of Completing the Square
 TIMath.com: Algebra 2

Teacher Notes
6. Use your formula to calculate the total area for each dinner napkin using the x-values in the table. Show your work in the table below.

x	Substitute x in formula	Area
1	$(15+1)^{2}$	$256 \mathrm{~cm}^{2}$
2	$(15+2)^{2}$	$289 \mathrm{~cm}^{2}$
3	$(15+3)^{2}$	$324 \mathrm{~cm}^{2}$
4	$(15+4)^{2}$	$361 \mathrm{~cm}^{2}$
5	$(15+4)^{2}$	$400 \mathrm{~cm}^{2}$

Teacher Tip: Students can also use the expanded formula to calculate the area.
7. On page 1.4, use the Measurement tool (MENU > Measurement > Area) to find the area of the napkin for each value of x listed in the table. How did your results from Question 6 compare?
8. Using the areas from Questions 2 and 6 , how can you determine the area of the decorative border? Explain.
9. Write a general formula in the form of $A=s^{2}$ to find the area of the decorative portion of the napkin (not including border). Use the labels from the picture on page 2.2.
10. Expand your formula from Question 9. How does this formula differ from the formula from Question 4 regarding the dinner napkin?
11. Use your formula to calculate the area of the decorative portion of five cocktail napkins using the x-values in the table. Show your work in the table below.

Answers may vary and are dependent on student responses to Question 6.

Take the area of the entire napkin (from Question 6) and subtract the area of the white square (from Question 2).
$A=(15-x)^{2}$

$$
\begin{aligned}
& A=(15-x)^{2} \\
& A=(15-x)(15-x) \\
& A=225-30 x+x^{2} \quad \text { or } \quad A=x^{2}-30 x+225
\end{aligned}
$$

The only difference between the two formulas is that the sign of the coefficient of the x is negative instead of positive.

x	Substitute x in formula	Area
1	$(15-1)^{2}$	$196 \mathrm{~cm}^{2}$
2	$(15-2)^{2}$	$169 \mathrm{~cm}^{2}$
3	$(15-3)^{2}$	$144 \mathrm{~cm}^{2}$
4	$(15-4)^{2}$	$121 \mathrm{~cm}^{2}$
5	$(15-5)^{2}$	$100 \mathrm{~cm}^{2}$

Application of Completing the Square TIMath.сом: Algebra 2

12. On page 2.2, use the Measurement tool (MENU > Measurement > Area) to find the areas for each value of x listed in the table. How did your results from Question 11 compare?
13. How can you determine the coefficient of the x-term and the constant term of the quadratic without going through the process of expanding the new formula? Explain.

Answers may vary and are dependent on student responses to Question 11.

The new formula will become $A=(13-x)^{2}$, so the constant will be 13-13 or 169. Therefore, the coefficient of the x-term will be 26, since half of 26 is 13 .

Wrap Up:

Upon completion of the discussion, the teacher should ensure that students are able to:

- Recognize the characteristics of a perfect square quadratic.
- Understand how to use the characteristics of a perfect square quadratic to complete the square.
- Understand how perfect square quadratics can be used to solve real-world problems.

