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At 10pm, a student drops a very small ball from an overpass, 50 feet above ground. Thirty feet away is a 
bright light atop a pole, also 50 feet above ground. (Refer to figure 1.) In figure 2, the L ight is at point L . 
The Foot of the pole is point F. Before it begins to drop, the ball is at point O. 

Fig.1  Fig.2  
You are going to investigate the relative positions of the ball and its shadow at various times during the 
ball’s fall toward earth. To do so, you need to find an equation somehow relating ball and shadow. At any 
time after the ball begins to fall (but before it hits the ground), the relationship between its position and its 
shadow’s is determined by identical geometry.  
 
So, consider an arbitrary instant during the time the ball is falling, somewhere near the halfway point of its 
fall toward earth, such as at point B in figure 2. As the ball falls, its shadow moves “from infinity” along the 
ground toward the point at which it meets the ball. This is point P, the “Plop” Point, where the ball hits the 
ground (squashing its shadow). If we consider the ball to be a point, the only light ray of interest is the one 
(LS) that hits the ball, thereby causing the shadow to appear as a point on the ground at point S. 
 
As the ball falls, it covers a variable amount of distance, which depends on the time the ball has been 
falling. The same goes for the shadow. So set OB = z, BP = y, and PS = x.  
 
1.  In figure 2, there are two similar right triangles. Write a proportion using x, y, and/or z. 
 
 
 
 
2.  The ball is freely falling, accelerating at the constant rate of 32 (ft/sec)/sec. Its instantaneous 

acceleration (a) is the derivative (with respect to time) of its instantaneous velocity (v). Give an 
equation for v in terms of time t. This is easy because a is constant. 
          v(t) = ________ 

Check: Does 32−=
dt

dv
ft/sec2 ? (Why negative?) 

 
3.  Keeping in mind that instantaneous velocity (v) is the derivative (with respect to time) of the position 

function (h), give an equation for the position of the ball at any time t (before it plops).  
      h(t) = _________ 

Check: Does v
dt

dh = ? 

Check: Is the initial height 50? (That is, does h(0) = 50?) 
 

4.  Because of the vertical movement of the ball, your TI-89 will best show the problem situation in 
parametric mode. Graphs defined by parametric equations have their points (x,y) defined by a third 
variable usually named t, so named because t is so often time in the parametric world. So both x and y 
are functions of t. 
There are 3 things to get into the picture, so there will be 3 parametric equations to define. 
a. The light, which never moves, but should be graphed as a (single) reference point; 
b. the ball, which moves vertically (downward from the overpass); and 



c. the shadow, which moves horizontally (leftward from positive ∞). 
 
Let’s put the origin at F. Then the coordinates of the light are (0,50) at all times t. It could be “graphed” 
by making xt1 = 0 and yt1 = 50. Of course, the light doesn’t move, but your ‘89’s “path” graph style 
will make it appear during graphing. How to do so is shown in figure 3. 

Fig. 3   
The ball is moving, but only vertically. Its x-coordinate is always 30 (Why?) and its y-coordinate is h, 
where h is what you got in #3. So, make xt2 = 30 and yt2 = …whatever you got for its height in #3… 
 
Although its y-coordinate is always 0 (Why?), the x-coordinate of the shadow requires you to solve 
your equation from part 1 for x. Note that the x-coordinate of the shadow is 30+x (Why?). You will 
have expressed x in terms of y, so expressing xt3 in terms of yt2 is perfectly OK, but it’s hard to type 
correctly, so you might want to express xt3 in terms of t, as shown in figure 4. 

         

Fig. 4  
 

5.  Summary: for your parametric function definitions, you have:  
     Light:   xt1 = 0  yt1 = 50 
 
     Ball:   xt2 = 30  yt2 = _____ 
 
     Shadow:  xt3 = _______________ yt3 = 0 
Put these equations into your ’89. To get into parametric mode, press �"�. To get the most from 
the graphs, use discrete (dot) graph style, not connected (line). To do so, position the cursor on the yt 
(or xt) equation for the ball and shadow functions in the function editor (R screen), press �g, and 
select option 2. 
 

6.  Setting the window is always important. A table (fig. 5) can help. It shows that, initially, S is “at 
infinity.” (Why?) But it quickly heads toward P, so set xmax to 200, ignoring the first .6 seconds of 
motion. Looking further down through the table suggests setting tmax to 1.7 or so (fig. 6), since that is 
the time just before plop down. (To get this table yourself, press �e (TblSet), make tblStart  = 0 and 
∆tbl  = .1, press �, and then press �f (TABLE ).) 

          



Fig  5      
 

Fig. 6   
 
Since negative time is meaningless in this problem, tmin  should be 0. To find tmax more precisely just 
think: How long will it take for the ball to hit ground? You’ll want to solve yt2=0. (Why?)  
 
 
           tmax = _____ 
 

7.  Keeping in mind that t will go from tmin  to tmax by the value of tstep, setting tstep too small will 
result in super slow motion, while making it too big will result in super fast motion. Make a table of 
values of tstep and corresponding numbers of points that would have to be plotted and base your tstep 

choice on the table data. The relationship you need is 
n

tMintMax
tStep

−= where n is the number 

of points that will be plotted for the given tmin , tmax, and tstep. 

 
8. The heights of the poles and location of the ground (on the x-axis) suggests making ymin = 0,  

 
ymax = 50 and xmin = 0, but you might want to make ymin negative since it’s going to be important 
to be able to read the trace coordinates when you graph. You might also want to leave space above and 
to the left of the light pole by making ymax larger than 50 and xmin negative. 
 

9. Summarize your window:   tmin = _____ tmax = _____ tstep = _____ 
 
       xmin = _____ xmax = _____ 
 
      ymin = _____ ymax = _____ 
 

10. Graph it! If things are too fast or slow, just change tstep. What you should see is what you’d expect—a 
discrete graph of ball positions and shadow positions for the t values dictated by your window. During 
graphing, press � to “freeze” the action as soon as both the ball and the shadow appear in the 
window. Press � again to un-freeze the action. Is the graph consistent with the sketch in figure 2? 
Does it look like figure 7? The ball should not go “through the ground.” The shadow should not pass 
the plop down point. If things don’t look right, retreat and discuss your equations and settings with a 

tstep number of points (n) 
10  
1  
.1  
.01  



classmate. 

Fig. 7   (Note the light “shining” at the upper left!) 
 
11. Once the graphing has finished, trace the ball and shadow graphs so that you can answer the questions 

in the table below. The trace should resemble figures 8 and 9 below, where we have traced to the 
positions of ball and shadow at time t = 1.  

Fig. 8    Fig. 9   
 

a. Which is moving faster initially: ball or 
shadow? 

 

b. Why?  
 

c. Which is moving faster at plop-down?  
d. Why?  

 
e. Is there a time when the speeds of the ball and 

shadow are equal? If so, how might you try to 
find it? If not, why not? 

 
 
 

f. Set tstep to 0.1 and trace to the instant when  
t = 1. Estimate the instantaneous speed of the 
ball then. Show your calculation. Keep in mind 
that each dot represents the position of the ball 
at the corresponding time. 

 

g. Approximately how fast is the shadow moving 
when t = 1? Show your calculation. 

 
 
 

h. Suppose you wanted to improve on your 
approximations for the instantaneous speeds. 
What would you do? 

 

 
12. Turn off the light (no joke!) and make a table of just the ball and shadow functions. In the function 

editor, the e key turns off (or on) a particular function. Turn off everything but yt2 and xt3. Set 
tblStart  = 1 and ∆tbl  =.01 and look at the table. What are your approximations now for instantaneous 
ball speed and shadow speed at time t = 1? You might want to use the forward, backward, and 
symmetric difference quotients.  
 
 



 
 
 
13. What if you wanted the exact values for the instantaneous speeds? What would you do? 

 
 
 
 
 
 
 

14. As the ball moves, its shadow does so in a predictable way—the objects are related by the laws of 
physics. But their rates are also related. The kind of problem you have just experienced is called a 
related rates problem. The relationship between the rates can be expressed via the Chain Rule.  
If y = f(t) (such as the ball’s position) and x = g(t) (such as the ball’s shadow’s position), then their 
instantaneous rates (their derivatives) are related by the chain rule. Fill in the 2 blanks below. 

          
d

d

dt

dy

dt

dx ⋅=  

15. To find the “missing” rate in the previous blank, you need the equation from part 1 that relates y (the 
ball’s position) to x (its shadow’s position). Find the derivative of x with respect to y.  
 
 
 
 

16. Now, use the chain rule to symbolically find the exact speed of the shadow at time t = 1. 
 
 
 
 

17. You do not have to use the chain rule to find the shadow’s speed if you expressed xt3 in terms of t in 
part 4. On the � screen, use the symmetric, forward, or backward difference quotient to compute 
the exact speed at t = 1 by letting ∆t approach 0. 
 
 
 
 

18. Wasn’t this a ball? 
 



Calculus Generic Scope and Sequence Topics: 

  4. Applications of Derivatives 
12. Parametric, Vector and Polar Functions 
14. Motion 
 
NCTM Standards: Algebra, Geometry, Problem solving, Connections, Representation 


