

The German painter Hans Holbein II (1497-1543) used a technique called anamorphosis to hide a stretched skull in his portrait The Ambassadors (1533). You can see the skull in the original painting if you look across the page from the lower-left. The painting was originally hung above a doorway so people would notice the skull as they walked through the door. Holbein may have been making a political statement about these two French ambassadors who were members of England's court of King Henry VIII.

Investigation

Changing the Shape of a Graph

In this investigation you will learn how to stretch or shrink a graph vertically.

Step 1

Step 2

Step 3

Step 4

Step 5

Name the coordinates of the vertices of this quadrilateral.

Procedure Note

For this investigation, use a friendly window with a factor of 2 .

Graph the quadrilateral on your calculator. Use list Li for the x-coordinates of the vertices and list L_{2} for the y-coordinates of the vertices.

Share your results from Step 3. For each value of a, describe the transformation of the quadrilateral in Step 2. What was the result for each vertex?

Organize your results from this first part of the investigation.

Step 6 Graph this triangle on your calculator. Use list Li for the x-coordinates of the vertices and list L_{2} for the y-coordinates of the vertices.

Step 7

Step 8

Describe how definitions a and b below transform the triangle. Use list L3 for the x-coordinates of the vertices of the image and list L 4 for the y-coordinates of the
 vertices of the image. Check your answers by graphing on your calculator.
a. $\mathrm{L}_{3}=\mathrm{L} 1$
b. $\mathrm{L}_{3}=\mathrm{L}_{1}$
$\mathrm{L}_{4}=-0.5 \cdot \mathrm{~L}_{2}$
$\mathrm{L}_{4}=2 \cdot \mathrm{~L} 2-2$

Write definitions for list L 3 and list L 4 in terms of list L 1 and list L 2 to create each image below. Check your definitions by graphing on your calculator.
a.

b.

Next, see how you can stretch and shrink the graph of a function.
Step 9 Each member of your group should choose an equation from the list below. Enter your equation into Y_{1} and graph it on your calculator.

$$
\begin{array}{ll}
\mathrm{Y}_{1}(x)=-1+0.5 x & \mathrm{Y}_{1}(x)=|x|-2 \\
\mathrm{Y}_{1}(x)=-x^{2}+1 & \mathrm{Y}_{1}(x)=1.4^{x}
\end{array}
$$

Step 10
Enter $\mathrm{Y}_{2}(x)=2 \cdot \mathrm{Y}_{1}(x)$ and graph it. $[\square \square$ See Calculator Note 9B for specific instructions for your calculator. 4]

Step 11
Look at a table on your calculator and compare the y-values for Y_{1} and Y_{2}.
Step 12
Repeat Steps 10 and 11, but use these equations for Y 2.
a. $\mathrm{Y}_{2}(x)=0.5 \cdot \mathrm{Y}_{1}(x)$
b. $\mathrm{Y}_{2}(x)=3 \cdot \mathrm{Y}_{1}(x)$
c. $\mathrm{Y}_{2}(x)=-2 \cdot \mathrm{Y}_{1}(x)$

Step 13
Write an equation for $R(x)$ in terms of $B(x)$. Then write an equation for $B(x)$ in terms of $R(x)$.
a.

b.

