Exploration 1-1a: Instantaneous Rate of Change of a Function

Objective: Explore the instantaneous rate of change of a function.

The diagram shows a door with an automatic closer. At time $t=0 \mathrm{~s}$, someone pushes the door. It swings open, slows down, stops, starts closing, then slams shut at time $t=7 \mathrm{~s}$. As the door is in motion, the number of degrees, d, it is from its closed position depends on t.

1. Sketch a reasonable graph of d versus t.
2. Suppose that d is given by the equation

$$
d=200 t \cdot 2^{-t}
$$

Plot this graph on your grapher. Sketch the results here.
3. Make a table of values of d for each second from $t=0$ through $t=10$. Round to the nearest 0.1°.

\boldsymbol{t}	\quad
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

4. At time $t=1 \mathrm{~s}$, does the door appear to be opening or closing? How do you tell?
5. What is the average rate at which the door is moving for the time interval [1, 1.1]? Based on your answer, does the door seem to be opening or closing at time $t=1$? Explain.
6. By finding average rates using the time intervals [1, 1.01], [1, 1.001], and so on, make a conjecture about the instantaneous rate at which the door is moving at time $t=1 \mathrm{~s}$.
7. In calculus you will learn by four methods:

- algebraically,
- numerically,
- graphically,
- verbally (talking and writing).

What did you learn as a result of doing this
Exploration that you did not know before?
8. Read Section 1-1. What do you notice?

